MCP Method 2 Risk Characterizations

MassDEP & LSPA Training Seminars Fall 2005

Introduction & Overview

Paul W. Locke
MassDEP Bureau of Waste Site Cleanup
One Winter Street
Boston, MA 02108

(617) 556-1160 Paul.Locke@state.ma.us Mass.Gov/dep

Schedule for the Day

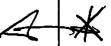
Time	Topic	Presenter	
9:00 – 9:10	Introduction & Overview	Paul Locke	
9:10 – 10:45	Regulatory Framework		
	Deriving New M2 Standards		
	Leaching, Infiltration, Transport & Discharge		
10:45-11:00	Break		
11:00-12:00	Real World Examples Janet Keating Conn		
12:00-1:00	Risk Assessment ShortForm Andrew Friedman		

Regulatory Framework: What's Allowed, What Isn't & Why

Paul W. Locke
MassDEP Bureau of Waste Site Cleanup
One Winter Street
Boston, MA 02108

(617) 556-1160 Paul.Locke@state.ma.us Mass.Gov/dep

Regulatory Framework


- 310 CMR40.0941
 Approaches to Characterizing Risk of Harm
- 301 CMR 40.0942
 Selection of Method to Characterize the Risk of Harm to Health, Public Welfare and the Environment
- 310 CMR 40.0980
 Method 2 Risk Characterization

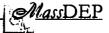
<u>MassDEP</u>

310 CMR40.0941

Approaches to Characterizing Risk of Harm

1. Imminent Hazards, Substantial Hazards and Safety Hazards evaluated separately;

- 2. Method 1, 2 and/or 3 used to evaluate risk of harm to health, public welfare and the environment;
- 3. Method used depends on nature of risks, response action and site.


310 CMR 40.0942 Selection of Method

- Methods designed to provide roughly equivalent level of protection, as measured by Cumulative Receptor Risk
 310 CMR 40.0902(2)(a)
- Method 2 is never required

MassDEF

310 CMR 40.0942 **Selection of Method**

- Method 2 alone can be used if contamination limited to soil & groundwater [like M1, see 40.0942(2)]
- A risk characterization using <u>both</u> Method 1 and Method 2 values is considered a "Method 2" (for bookkeeping purposes).

310 CMR 40.0942 **Selection of Method**

- A *combined* Method 2 and Method 3 is possible, if:
 - Method 2 can address all human health risk in soil, groundwater and possibly sediment, and
 - Method 3 is used only for ecological risk

310 CMR 40.0942 Selection of Method

"and possibly sediment"?

• Yes, see MCP Master Q&A, page 70, where DEP clarifies an instance in which "sediment" can be considered "soil" to simplify the risk characterization

<u>MassDEP</u>

310 CMR 40.0980

Method 2 Risk Characterization: What CAN Be Done

- Groundwater and Soil Standards Developed for chemicals without Method 1 Standards
- Site-Specific Conditions used to modify the leaching component of the Method 1 Soil Standards, or show the contaminant will not leach

310 CMR 40.0980

Method 2 Risk Characterization: What CAN Be Done

- Site-Specific Conditions used to modify the vapor infiltration component of the Method 1 GW-2 Groundwater Standards, or show an incomplete pathway
- Site-Specific Conditions used to modify the groundwater transport component of the Method 1 GW-3 Groundwater Standards, or show no discharge will occur


310 CMR 40.0980

Method 2 Risk Characterization: What CAN Be Done

• Any Combination of the Above Items

For Example:

You CAN create a new soil standard for a chemical without a Method 1 value AND apply site-specific leaching criteria.

310 CMR 40.0980

Method 2 Risk Characterization: What CANNOT Be Done

• Cannot modify Method 1 GW-1 Standards. Ever.

• Cannot modify the risk assessment aspects of the Method 1 Standards (e.g., exposure frequency, body weight, toxicity values)

310 CMR 40.0980

Method 2 Risk Characterization: What CANNOT Be Done

- Cannot increase the Soil Standards beyond the values listed in Table 5 for Direct Contact Exposures
- Cannot increase the GW-2 or GW-3 standards beyond the Upper Concentration Limits listed in Table 6

310 CMR 40.0980 Other Considerations

- Method 2 Standards are used like Method 1 Standards
 - E.g., rules for averaging apply
- The MCP Method 2 Standards developed and used or relied upon by the LSP shall be listed and suitably documented. (40.0982(6))
 - Include equations, input parameters, modeling assumptions and cite sources.

310 CMR 40.0980 Other Considerations

- MassDEP-derived and published Method 2 Standards (310 CMR 40.0982(7))
 - Useable like Method 1 Standards
 - Used at the PRP's/LSP's option

Example:

 "Final" Method 1 Standards before their effective date. MassDEP will publish (on web) values and invoke this rule

<u>MassDEP</u>

(12. WALZ)

Deriving New Method 2 Standards: Equations and References

Paul W. Locke

MassDEP Bureau of Waste Site Cleanup

One Winter Street

Boston, MA 02108

(617) 556-1160 Paul.Locke@state.ma.us Mass.Gov/dep

MassDEP

MassDEP

Deriving "New" Method 2 Standards

Replicating the Method 1 Standard Development Process

- Regulations specify step-by-step process in 40.0983 (groundwater) and 40.0984 (soil)
- Specified equations incorporate default exposure assumptions which cannot be modified

Deriving "New" Method 2 Standards

Replicating the Method 1 Standard Development Process

- Specified equations incorporate default fate & transport (volatilization, migrations, leaching) assumptions
- Fate and transport considerations can subsequently be modified on a site-by-site basis (40.0985 through 40.0987)
- For ease-of-use, these two steps can be combined into one calculation

 MassDEP

Share Super

Deriving "New" Method 2 Standards

Replicating the Method 1 Standard Development Process

- Helpful references:
 - "Background Documentation for the Development of the MCP Numerical Standards" (1994)
 - "Guidance for Disposal Site Risk Characterization" (1996)
- Documentation and equations will be updated to reflect "Wave 2" changes, but the basic process will remain the same
- See also derivation of standards on web at http://Mass.Gov/dep/bwsc/files/standard/standard.htm

(united of '05?)

MOSIM

Deriving "New" Method 2 Standards

Replicating the Method 1 Standard Development Process

Common Factors:

- RfD = Reference Dose, a measure of noncancer toxicity. Units: mg/(kg*day)
- CSF = Cancer Slope Factor, a measure of carcinogenicity (oral). Units: (mg/(kg*day))-1
- UR = Unit Risk, a measure of carcinogenicity (inhalation). Units: (μg/m³)-1
 - Start looking for these values at MassDEP (http://Mass.Gov/dep/ors/orspubs.htm) or USEPA (http://www.epa.gov/iriswebp/iris/index.html)

Deriving "New" Method 2 Standards

Replicating the Method 1 Standard Development Process

Common Factors:

• RAF = Relative Absorption Factor (unitless)

Can be set = 1 for a generally conservative default, Described in MassDEP Risk Assessment Guidance

• OHM = Acronym for "Oil or Hazardous Material"

Creating GW-1 Standards

40.0983(2)

- GW-1 Standards are based on the protection of groundwater for either its current or future use as drinking water
- Standard exposure assumptions assume a lifetime of drinking water at a rate of 2 liters/day.
- Assumptions consistent with methods for setting USEPA and MassDEP Maximum Contaminant Levels (MCLs)

<u>MassDEP</u>

Groundwater GW-1 Standards Noncancer Risk-Based Concentration Cancer Lowest of Risk-Based These 3 Concentration Concentrations Highest of these Ceiling Value 3 Concentrations 50% Odor Background Recognition Practical Threshold Ouantitation Limit (PQL) Lower of These Values |® Adopt as GW-1 Standard <u>MassDEP</u>

Creating GW-1 Standards

40.0983(2)

• Non-Cancer Risk-Based Level:

$$[OHM] = \frac{(RfD \times 7,000)}{RAF_{oral}}$$

• 7,000 = Exposure Factors:

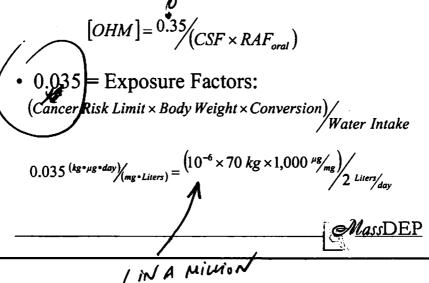
(Hazard Index × Body Weight × Conversion)/ Water Intake

$$7,000 \, \frac{(kg \cdot \mu g \cdot day)}{(mg \cdot Liters)} = \frac{\left(0.2 \times 70 \, kg \times 1,000 \, \frac{\mu g}{mg}\right)}{2} \, \frac{Liters}{day}$$

Creating GW-1 Standards

40.0983(2)

• Always check units:


$$[OHM] = \frac{(RfD \times 7,000)}{RAF_{oral}}$$

$$\mu g/Liter = \frac{me/(kg + gdy)}{1} \times \frac{(kg + gdy)}{1} \times \frac{(kg + gdy)}{1}$$

Creating GW-1 Standards

• Cancer Risk-Based Level:

Creating GW-1 Standards

Odor Recognition Threshold

- Concentration in water that 50% of population can detect
- An objective measure of organoleptic (or·gan·o·lep·tic_(ôr g -n -l p t k, ôr-g n -) effects taste and odor that can indicate a risk to Public Welfare

My Christian or brighters of

Creating GW-1 Standards

40.0983(2)

Examples:

- 1. 2-ethyl-4-methyl-1,3-dioxolane (2-EMD) has a distinctive sweet odor described as "sickening sweet" or "medicinal sweet", with an odor threshold concentration of between 5 and 10 ng/l.
- 2. Using a panel of 57 consumers, a study yielded the 15 μ g/L threshold for MTBE, which was the geometric mean of the individual thresholds for each of the 57 consumer panelists.

MauDEP

Creating GW-1 Standards

40.0983(2)

Background Levels

- Site-specific background level in groundwater determined for the site
- See Risk Assessment Guidance, chapter 2, for background discussion
- Average (arithmetic average) site-specific value is appropriate

MassDEP

Pow to the circle

Creating GW-1 Standards

40.0983(2)

Practical Quantitation Limit

- Method 2 Standards should be measurable
- An appropriately sensitive analytical method should be identified as close to the risk-based levels as feasible
- "Method Detection Limit" or MDL not appropriate: values around the MDL are not reliably quantified

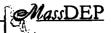
<u>MassDEP</u>

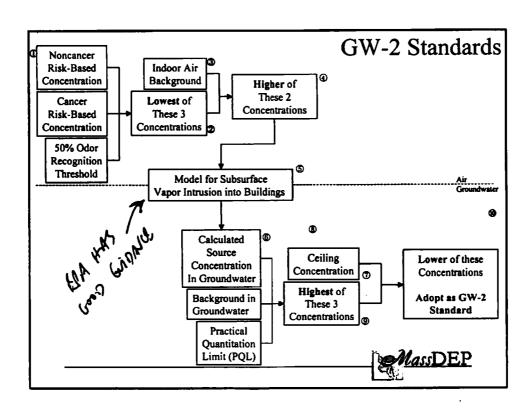
Creating GW-1 Standards

40.0983(2)

Ceiling Levels

- Ceiling level is a cap (50,000 µg/L) on how high the calculated risk-based value can be set on a generic basis
- In regulations application of ceiling value occurs at 310 MR 40.0983(5) after the methodology for all 3 GW standards


<u>MassDEP</u>


Creating GW-2 Standards

40.0983(3)

- Based on the infiltration of vapors into a building from a contaminated groundwater source.
- Exposure assumed to occur on a daily basis over a lifetime
- Methodology roughly similar to other states (CT) and USEPA VI guidance

There prior to

Creating GW-2 Standards

40.0983(3)

• Non-cancer Risk Equation:

 $[OHM]_{air} = 0.2 \times RfC$

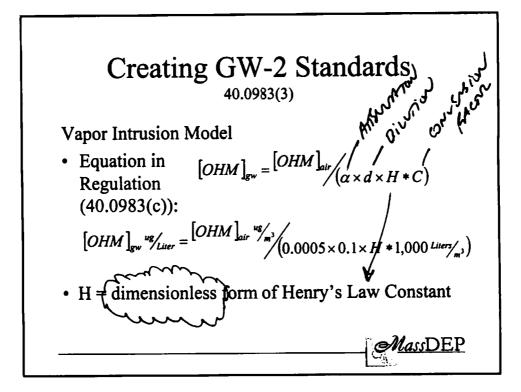
• Cancer Risk Equations:

$$[OHM]_{air} = 10^{-6} / UR_{air}$$

• 50% Odor Threshold in air

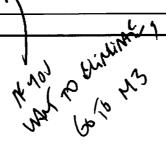
<u>MassDEP</u>

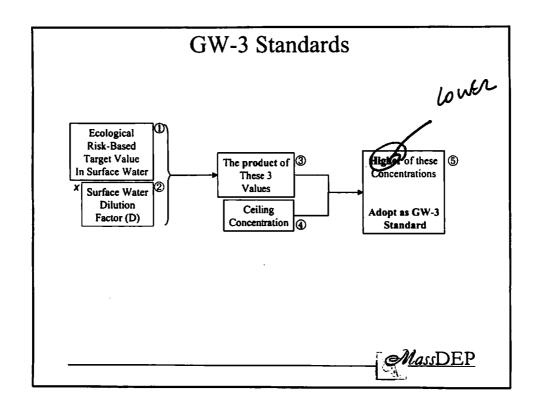
Creating GW-2 Standards


40.0983(3)

Indoor Air Background

- Regulations do *not* specify "site-specific"
- See Discussions:
 - Guidance for Disposal Site Risk Characterization Policy #95-141, Section 2.3 (page 2-25)
 - Indoor Air Sampling and Evaluation Guide, WSC Policy #02-430, Section 5.9 (page 56)

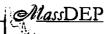

* JULY DAK MARCHS



Creating GW-3 Standards

- Based on the potential ecological risk posed by a discharge of contaminated groundwater to a surface water body
- Assumes minimal dilution during groundwater transport and discharge
- Assumes ecological receptors in receiving water body

MassDEP



Creating GW-3 Standards 40.0983(4)

Target Ecological Risk-Based Concentration

- Regulations specify (USEPA) Water Quality Criteria or "analogous value"
- MassDEP has described a hierarchy of "analogous values"

(See documentation of proposed GW-3 values)

Control of the Copy

Creating GW-3 Standards

40.0983(4)

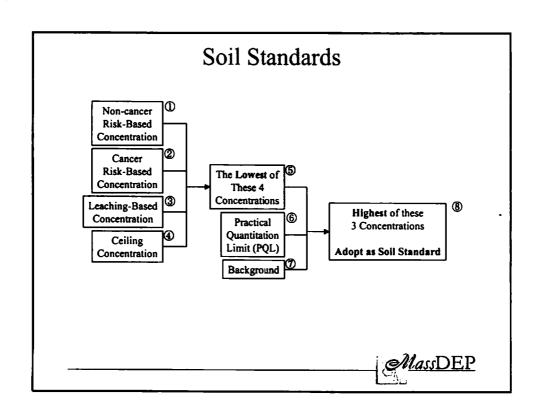
- · Hierarchy:
 - National Recommended Water Quality Criteria (chronic preferred to acute)
 - LOEC, EC₅₀ or LC₅₀ from literature (see USEPA's AQUIRE database)
 - Suter and Tsao (1996)
 - Other literature sources

Acute values are divided by factor of 10 to estimate chronic value

Creating GW-3 Standards

40.0983(4)

Surface Water Dilution Factor


- Set to 10 as estimate of dilution as groundwater discharges to a low-flow stream
- Based on minimal dilution factored into surface water discharge permits

Creating Soil Standards 40.0984

- Methodology for S-1, S-2 and S-3 Soil Standards is the same, just the exposure factors differ
- Ceiling Concentrations also vary by soil category and chemical-specific factors

Creating Soil Standards

40.0984

• Non-Cancer Risk Equation:

$$[OHM] = \frac{\left(RfD \times 0.2 \times 10^{6} \text{ mg/}_{kg}\right)}{\left(\left(RAF_{oral} \times OEF\right) + \left(RAF_{dermal} \times DEF\right)\right)}$$

• Cancer Risk Equation:

$$[OHM] = \frac{(10^{-6} \times 10^{6} \text{ mg/kg})}{(CSF \times (RAF_{oral} \times OEF) + (RAF_{dermal} \times DEF))}$$

OEF = "oral exposure factor"

DEF = "dermal exposure factor"

Creating Soil Standards

40.0984

Non-Cancer Risk Exposure Factors

mg_oil/(kghody weight * day)

	Oral Exposure Factor	Dermal Exposure Factor
S-1	3.1	28.5
S-2	0.29	15.2
S-3	0.63	32.5

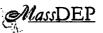
MassDEP

Creating Soil Standards

40.0984

Cancer Risk Exposure Factors

 $mg_{soil}/(kg_{body\ weight}*day)$


	Oral Exposure Factor	Dermal Exposure Factor
S-1	0.41	7.3
S-2	0.11	5.48
S-3	0.029	1.5
		[ManDEI

Creating Soil Standards

40.0984

Basis for Oral and Dermal Exposure Factors

- Described in "Background Documentation...", appendices A, B & C
- Year-by-Year Average Daily Soil Intake and Dermal Contact Rates
- Excessively complex. Wave 2 process greatly simplified and transparent

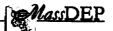
Creating Soil Standards

40,0984

Leaching-Based Value

- Must consider applicable Groundwater Standards at the site (Hint: Create the groundwater standards first.)
- 40.0984(4) refers to 40.0985 giving sitespecific flexibility to develop leaching-based number
- Continue in process for each soil/groundwater category combination

Creating Soil Standards


40.0984

Soil Ceiling Concentrations

- Different values by both soil category and chemical characteristics
- Public Welfare concerns: "Odor Index" approach:

Odor Index = Vapor Pressure x Odor Threshold_{50%}

• Greater "Odor Index" the lower the ceiling

to the byling,

Creating Soil Standards

40.0984

Ceiling Values (mg/kg)

	High	Medium	Low
	Odor Index	Odor Index	Odor Index
S-1	100	500	1,000
S-2	500	1,000	2,500
S-3	1,000	2,500	5,000
MassDE			

Creating Soil Standards

40.0984

Soil Background Concentrations

- Regulations specify a site-specific background level (40.0984(1))
- See Risk Assessment Guidance, chapter 2, for background discussion
- Average (arithmetic average) site-specific value is appropriate

<u>MassDEP</u>

Modeling Leaching, Vapor Infiltration and Groundwater Transport

Paul W. Locke
MassDEP Bureau of Waste Site Cleanup
One Winter Street
Boston, MA 02108

(617) 556-1160 Paul.Locke@state.ma.us Mass.Gov/dep

Leaching

40.0985

- Modify Method 1 (or 2) standards based on site-specific leaching considerations
 - Develop an alternative leaching-based soil concentration
 - Demonstrate that leaching is not a concern at the site
 - Use modeling of source mass and subsurface hydrogeological conditions
 - Use leaching tests

<u>MassDEP</u>

<u>MassDEP</u>

Leaching

What is the current Method 1 standard based on?

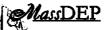
Will modifying the leaching component significantly change the outcome?

1.e. parties

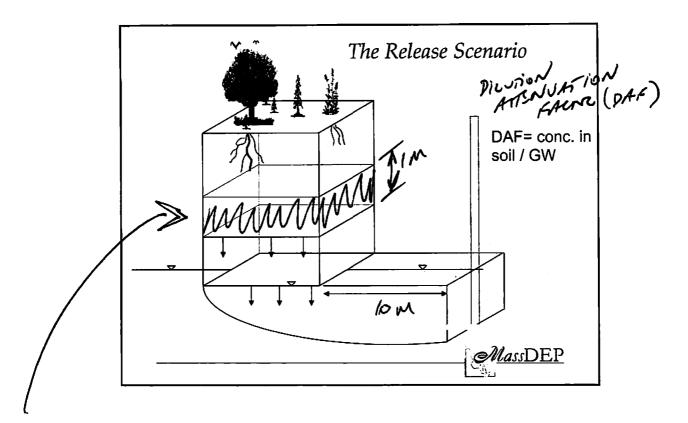
Leaching

40.0985

- Method 2 changes to the soil standards limited by the Direct Contact Risk-Based values listed in Table 5
- If the Method 1 Standard is equal to or close to the Table 5 value, Ça ne vaut pas la peine. (Not with the Air)



Leaching


40.0985

1993 DEP used a simple modification of an Oregon DEQ model:

- 3-meter thick unsaturated zone, divided into three 1-meter layers.
- Contamination in the middle layer
- Contamination uniformly distributed over a 10 m x 10 m area.
- Unsaturated zone and aquifer are sandy soil with uniform properties.
- Upper and lower unsaturated zone layers are initially clean, as is the aquifer.

Jensey it out ?

Leaching

40.0985

• Eight chemicals run through SESOIL/AT123D model to develop regression equation then applied to remaining Method 1 chemicals:

$$DAF = 6207 * H + 0.166 * Koc$$

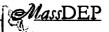
- This equation can be used as a simple first cut (for new standards), but...
 - MassDEP discovered flaws in Oregon's model
 - Site-specific data needed for adjusting Method 1 stnds

Leaching

40.0985

Sensitivity Analysis

- Distance to a receptor in Y-axis (Most sensitive)
- Hydraulic conductivity
- · Thickness of the upper layer of the soil column
- Thickness of the layer above the saturated zone
- · Regional climate of MA
- Bulk density (Least sensitive)



Leaching

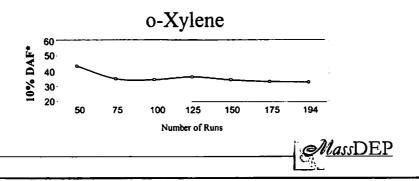
40 0985

Examples of Massachusetts-Specific Input Data/Distributions

- Bulk density: Point value, 1.6 g/cc
- Effective porosity: Uniform distribution, 0.25 0.35
- Hydraulic gradient: Logarithmic distribution, mean= -4.53, S.D.=1.08
- Hydraulic gradient arithmetic space: mean= 0.01, lower limit = 0.0015, upper limit = 0.03

Leaching 40.0985

Range of Results using Mass-Specific Data Using SESOIL/AT123d


Carbon Tetrachloride (DAF)					
				MCP	
85%	90%	959	% 1993 DAF	GW-1 Std., mg/l	
3,627	1,441	51	3 200	0.005	
Carbor	Carbon Tetrachloride (Soil Cleanup Numbers, mg/kg):				
85%	90%	95%	Current leaching	g Std.(GW-1)	
18	7	3	1	MassDEP	

Leaching

40.0985

Range of Results using Mass-Specific Data

Even without modifying source area parameters, the range of Mass-specific values demonstrate variability expected in DAF given site-variability

Vapor Infiltration ("VI")

40.0986

- Modify Method 1 (or 2) standards based on sitespecific information
 - Develop an alternative VI-based groundwater concentration
 - Demonstrate that VI is not a concern at the site
 - Use modeling of source, subsurface hydrogeological and building conditions
 - Use soil gas characterization, indoor air data or other field investigations
 - UCL is the upper limit to allowed Method 2 modification

Vapor Infiltration

40 0986

Use MassDEP or USEPA spreadsheets based on Johnson & Ettinger model

- Use MassDEP default exposure parameters
- Use MassDEP default chemical parameters (if available)
- Use site-specific characteristics

Vapor Infiltration

40.0986

Sensitivity Analysis of Site-Specific Factors

Donibiti 110j 1 III	wij bib of bitter	opeome racions
Parameter	Change in Parameter	Change in GW-2 Standard
Depth to bottom of basement floor	$\qquad \qquad \Box$	ÛÛ
Depth to Water Table	Î	ÛÛÛ
Soil Dry Bulk Density	Î	Û
Soil Water-Filled Porosity	Î	ÛÛÛ
Soil Total Porosity	Î	- III

Vapor Infiltration 40.0986		COLYMAINMA
es: A Spreadsheets —	Providence	

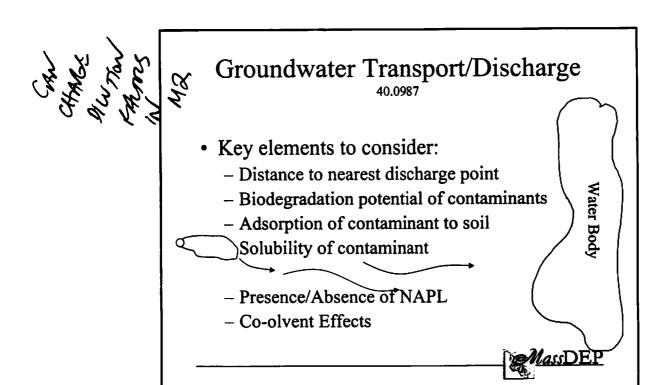
- Resources:
 - USEPA Spreadsheets

http://epa.gov/superfund/programs/risk/airmodel/johnson_ettinger.htm

- MassDEP Spreadsheets
 - Part of documentation to new Method 1 Standards
 - Will be available at http://mass.gov/dep/bwsc/files/standard/standard.htm

<u>MassDEP</u>

<u> MassDEP</u>


Godo Mariens Parkening

Groundwater Transport/Discharge

40.0987

- Modify Method 1 (or 2) standards based on sitespecific information
 - Develop an alternative groundwater concentration based on discharge to surface water
 - Demonstrate that surface water discharge is not occurring at the site
 - Use modeling of source, subsurface hydrogeological, and surface water body conditions
 - Use long-term monitoring NSR in the receiving surface water body
 - UCL is the upper limit to allowed Method 2 modification

Method 2 Modifications Summary

- How much will it help without modifying risk/exposure parameters?
- Modifications capped by Ceiling Levels, UCLs, Direct Contact Standards.
- Likely to require specialized skills: risk assessment, hydrogeology, modeling
- Potential to use site data as documentation/justification for a "no impact" conclusion

MassDEP

Cich to Cappay

proportion of the parameters good parameters

MCP Method 2 Risk Characterizations

Janet Keating-Connolly, LSP jconnolly@gza.com

GZA GeoEnvironmental, Inc.

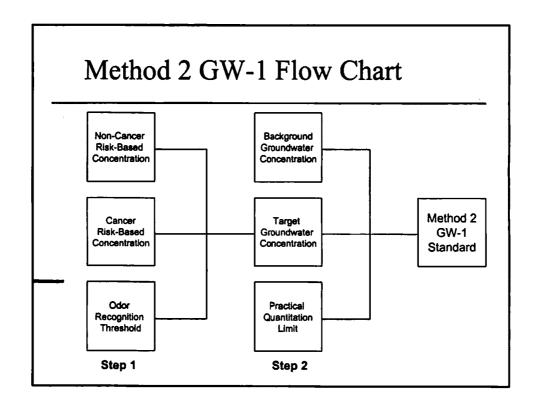
1 Edgewater Drive, Norwood, MA 02062

LSP Association/DEP Continuing Education Seminar Course #1294

Real World Examples

Example 1: Method 2 GW-1 Standard for 1,3,5-trimethylbenzene (standard not available)

Example 2: Method 2 GW-2 Standard for 1,1-dichloroethene (change in toxicity factor)

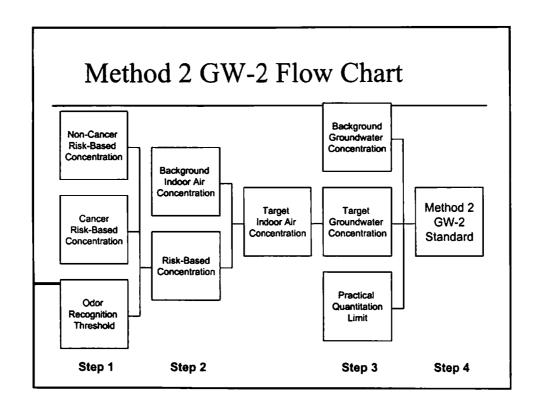

Example 3: Method 2 GW-3 Standard for butylbenzylphthalate (Method 1 not available)

More Examples

Example 4: Method 2 GW-3 Standard for silver (sitespecific evaluation of groundwater migration pathway)

Example 5: Method 2 Soil Standards for benzo(a)pyrene (changes prior to promulgation)

Example 6: Method 2 S-2/GW-2 Standard for naphthalene (site-specific evaluation of leaching potential)



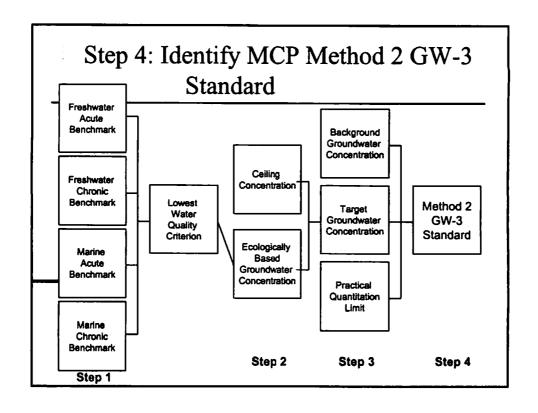
Example 1: Method 2 GW-1 Standard for 1,3,5-trimethylbenzene

Highest of the following three values:

- Target groundwater concentration from Step
 1 = 350 ug/L (non-cancer risk based conc.)
- 2. Background Concentration = 0 ug/L
- Practical quantitation limit = 2 ug/L
 Ceiling concentration = 50,000 ug/L

Method 2 GW-1 Standard = 350 ug/L

Example 2: Method 2 GW-2 Standard for 1,1-dichloroethene


1999 MCP	2002	Wave 2
Method 1 GW-2	Method 2 GW-2	Method 1 GW-2
1 ug/L	126 ug/L	80 ug/L
a = 5E-4	a = 5E-4	a = 7.87E-4

Change in toxicity factor: IRIS (2002) withdrew cancer slope factor and unit risk due to equivocal evidence of carcinogenicity (oral) and insufficient evidence of carcinogenicity (inhalation)

Non-cancer risk-based concentration now drives the standard

Change in attenuation factor reflected in proposed standard

Site-specific attenuation factor for vapor intrusion pathway could also be used

Example 3: Method 2 GW-3 Standard for butylbenzylphthalate

Method 1 GW-3 Standard not available for this constituent

- Step 1: Identify ecologically-based water quality criteria = 19 ug/L
- Step 2: Calculate ecologically-based groundwater concentration = 4750 ug/L
- Step 3: Identify Target Groundwater Concentration = 4750 ug/L.
- Step 4: Identify MCP Method 2 GW-3 Standard = 4750 ug/L

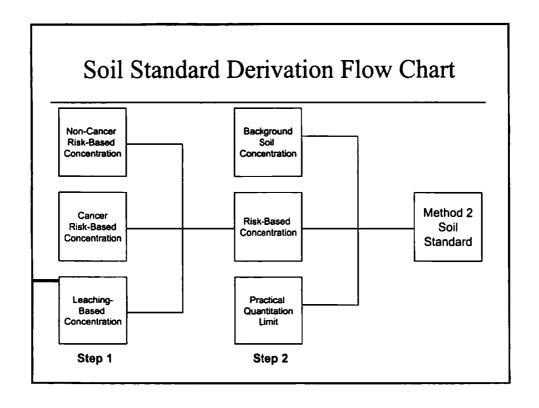
· Market

12 Carps Car

M2 MILLANE MILLANE DIWING MOST MILLANE DIWING MOST MILLANE

Example 4: Method 1 and Method 2 GW-3 Standards for silver

	1999 MCP Method 1 GW-3	Site-specific Method 2 GW-3	Wave 2 Method 1 GW-3
GW-3 Standard	7 ug/L	120 ug/L	7 ug/L
Target [sw]	0.12 ug/L	0.12 ug/L	0.03 ug/L
Target [gw]	1.2 ug/L	120 ug/L	0.75 ug/L
DAF	10	1000	NA
DF x AF	NA	NA	10 x 2.5
PQL	7 ug/L	7 ug/L	7 ug/L


Site-specific evaluation of groundwater migration pathway

Default dilution attenuation factor DAF was 10

Site-specific DAF ~1000

Lowest Ecologically Based Criterion changed; EPA retracted LOAEL of 0.12 ug/L used as Target [sw]

PQL becomes the standard

Example 5: Method 2 Soil Standards for benzo(a)pyrene

	1999 MCP Method 1	2002 Method 2	Wave 2 Method 1
S-1 Standard	0.7 mg/kg	2 mg/kg	2 mg/kg
Background	0.5 mg/kg	2 mg/kg	2 mg/kg

Technical Updates to the MADEP 1995 Guidance for Disposal Site Risk Characterization revise dermal contact rates for soil and provide background concentrations for PAHs and metals

Taking advantage of updated guidance prior to promulgation of standards based on this guidance requires complete calculation and documentation of method

Wave 2 (2004) Soil Ingestion and Contact Rates

	S-1	S-2	S-3
		mg _{soil} /kg/day	
NADSIR NADSIR	l .	0.27	1.3
NADSCR 7006	21	0.05	12.4
NLADSIR	0.38	0.11	0.01
NLADSCR (M	4.1	0.19	0.09

work to how char

Zoor pech. update

Example 6: Method 2 S-2/GW-2 Standard for naphthalene

	1999 MCP	Site-specific	Wave 2
	Method 1	Method 2	Method 1
S-2/GW-2 Standard	1000 mg/kg	190 mg/kg	40 mg/kg
DAF	220	32	32
Basis	Leaching	Leaching - Using Wave 2 DAF identified by MADEP	Leaching - GW-2 Standard decreases under Wave 2

Use of new DAF methodology identified by MADEP but not yet promulgated.

Note: under Wave 2 DAFs vary by groundwater category, e.g., naphthalene DAF = 32 (GW-1, -2) and 344 (GW-3) Under Wave 2, MADEP has identified the 85th percentile DAF for use in calculating GW-1 and GW-2 soil standards and the 50th percentile DAF for use in GW-3 soil standards.

Leaching-Based Soil Standards

- Wave 2 Method 1 Standards that are based on leaching
 - S-1
 - GW-1: 49% (58), GW-2: 36% (43), GW-3: 13% (16)
 - S-2
 - GW-1: 53% (63), GW-2: 42% (50), GW-3: 18% (22)
 - **■** S-3
 - GW-1: 55% (65), GW-2: 46% (55), GW-3: 21% (25)
- Wave 2 DAFs
 - 38 DAFs increase
 - Phenanthrene current: 0.24 Wave 2: 248
 - Carbon tetrachloride current: 207 Wave 2: 2611
 - 28 DAFs decrease
 - Acetone current: 45 Wave 2: 1
 - MtBE current: 44 Wave 2: 2

Summary and Q&A

- Method 2 is the middle ground between generic Method 1 and fully site-specific Method 3 Risk Characterizations.
- Method 2 is appropriate if only limited modifications to standards are needed.
- Method 2 can be cost-effective depending on the number of standards derived and/or modified.
- Success using a Method 2 approach depends on site characteristics, exposure pathways and knowledge of allowable modifications.

DERIVATION OF MCP METHOD 2 GROUNDWATER (GW-1) STANDARD (ug/L) 1,3,5-Trimethylbenzene

Selected from the lowest of the following three values:	Value Used	Source of Value	
Noncancer risk-based drinking water concentration [OHM]gw (ug/L)			
	350	1	Pish ASS ASSMERT INAVANDON SELVICA (RAIS)
RfD = Reference Dose published by U.S. EPA, mg/kg-day	0.05	RAIS, September 2001	WINDS MEMBERY
7000 is calculated as (0.2*70 kg*1000 ug/mg)/(2 L/d) using the following:			(RASS)
0.2, 20% source allocation factor	0.2	310 CMR 40.0983(2)a	
70 kg, adult body weight	70	310 CMR 40.0983(2)a	
1000 ug/mg, units conversion factor	1000	310 CMR 40.0983(2)a	
2 L/day, drinking water ingestion rate	2	310 CMR 40.0983(2)a	
RAF _{oral} , Relative Absorption Factor	1	assumed 100%	
(16)	•	2554mea 10070	
•	·	2550med (00%	
2. Cancer risk-based drinking water concentration [OHM]gw (ug/L)	NA	254med 10070	
2. Cancer risk-based drinking water concentration [OHM]gw (ug/L)	NA .	254ca 10070	
2. Cancer risk-based drinking water concentration [OHM]gw (ug/L) calculated using the following equation: 0.035/(CSF * RAF _{oral}) Where:	NA A	3334med 10070	
2. Cancer risk-based drinking water concentration [OHM]gw (ug/L) calculated using the following equation: 0.035/(CSF * RAF _{oral}) Where: 0.035 is calculated as (10 ⁻⁶ *70 kg*1000)/(2 L/d) using the following:			
2. Cancer risk-based drinking water concentration [OHM]gw (ug/L) calculated using the following equation: 0.035/(CSF * RAF _{oral}) Where: 0.035 is calculated as (10 ⁻⁶ *70 kg*1000)/(2 L/d) using the following: 10 ⁻⁶ target risk level	0.000001	310 CMR 40.0983(2)b	
2. Cancer risk-based drinking water concentration [OHM]gw (ug/L) calculated using the following equation: 0.035/(CSF * RAF _{oral}) Where: 0.035 is calculated as (10 ⁻⁶ *70 kg*1000)/(2 L/d) using the following: 10 ⁻⁶ target risk level 70 kg, adult body weight	0.000001 70	310 CMR 40.0983(2)b 310 CMR 40.0983(2)b	
2. Cancer risk-based drinking water concentration [OHM]gw (ug/L) calculated using the following equation: 0.035/(CSF * RAF _{oral}) Where: 0.035 is calculated as (10 ⁻⁶ *70 kg*1000)/(2 L/d) using the following: 10 ⁻⁶ target risk level	0.000001	310 CMR 40.0983(2)b	
2. Cancer risk-based drinking water concentration [OHM]gw (ug/L) calculated using the following equation: 0.035/(CSF * RAF _{oral}) Where: 0.035 is calculated as (10 ⁻⁶ *70 kg*1000)/(2 L/d) using the following: 10 ⁻⁶ target risk level 70 kg, adult body weight 1000 ug/mg, units conversion factor 2 L/day, drinking water ingestion rate	0.000001 70 1000 2	310 CMR 40.0983(2)b 310 CMR 40.0983(2)b 310 CMR 40.0983(2)b 310 CMR 40.0983(2)b	
2. Cancer risk-based drinking water concentration [OHM]gw (ug/L) calculated using the following equation: 0.035/(CSF * RAF _{oral}) Where: 0.035 is calculated as (10 ⁻⁶ *70 kg*1000)/(2 L/d) using the following: 10 ⁻⁶ target risk level 70 kg, adult body weight 1000 ug/mg, units conversion factor	0.000001 70 1000	310 CMR 40.0983(2)b 310 CMR 40.0983(2)b 310 CMR 40.0983(2)b	

DERIVATION OF MCP METHOD 2 GROUNDWATER (GW-1) STANDARD (ug/L) 1,3,5-Trimethylbenzene

Selected from the highest of the following three values,	350	Source of Value
Target Groundwater Concentration, ug/L	350	Step 3.
2. Site-specific background concentration, ug/L	0	assumed
3. Practical Quantitation Limit (PQL), ug/L	2	U.S. EPA Method 8021
And adjusted to Ceiling Concentration, ug/L		
Ceiling Concentration (ug/l):	50,000	310 CMR 40.0983(5)

Abbreviations;

CMR = Code of Massachusetts Regulations, 310 CMR 40.0000 is the Massachusetts Contingency Plan

DEP = Massachusetts Department of Environmental Protection

gw = groundwater

IRIS = Integrated Risk Information System www.epa,gov/iris

NA = Not Applicable or Not Available.

OHM = Oil or Hazardous Material

ORL_{60%} = Odor Recognition Threshold at which 50% of population can detect odor of chemical

PQL = Practical Quantitation Limit

RAIS = Risk Assessment Information System http://risk.lsd.ornl.gov

RfC = Reference Concentration

UR = Unit Risk

U.S. EPA = United States Environmental Protection Agency

DERIVATION OF MCP METHOD 2 GROUNDWATER (GW-2) STANDARD (µg/L) Chemical: 1,1-Dichloroethene

Selected from the lowest of the following three values:	Value Used	Source of Value
 Noncancer risk-based indoor air concentration [OHM]air (ug/m³) calculated using the following equation: 0.2 * Chronic RfC (ug/m³) Where: 	40	
0.2 = 20% source allocation factor		310 CMR 40.0983(2)a.1.
RfC = Reference Concentration published by U.S. EPA, ug/m ³ .	. 200	IRIS, 2002.
2. Cancer risk-based indoor air concentration [OHM]air (ug/m³) calculated using the following equation: 10 ⁻⁶ ÷ UR _{air} (ug/m³) Where:	NA	
10 ⁻⁶ = A one-in-a-million Excess Lifetime Cancer Risk. Dimensionless. UR _{air} = Unit Risk in air for the chemical, published by U.S. EPA, ug/m ³ .		310 CMR 40.0983(2)a.2.
OR _{air} – Onit Risk in air for the chemical, published by O.S. EPA, ug/m.	. NA	IRIS, 2002.
3. Odor Recognition Threshold (ORL _{50%}) (ug/m ³):	125,000	ATSDR Toxicological Profile
THE PROPERTY OF THE PROPERTY O		
Selected from the highest of the following two values: 1. Background indoor air concentration for chemical 2. Lowest value in Step 1.	NA 40	

DERIVATION OF MCP METHOD 2 GROUNDWATER (GW-2) STANDARD (μg/L) Chemical: 1,1-Dichloroethene

			** A **
Calculated using the following equation: [OHM]gw = [OHM]air + (α * d * H * C)	Value Used	Source of Value	
Where:			
[OHM]gw =The calculated groundwater concentration of the oil or hazardous			
material which would not result in an indoor air concentration greater than			
[OHM]air, ug/l.	126		
[OHM]air =The target indoor air concentration, ug/m ³ .	40	Step 2.	
α = Attenuation factor equal to 0.0005 (DEP default value). Dimensionless.	0.0005	310 CMR 40.0983(2)c	
d = An applied dilution factor (DEP value). Dimensionless.	1	310 CMR 40.0983(2)c	
H = Henry's Law Constant for the chemical. Dimensionless.	1		
C = Units Conversion Factor, 1000 liter/m3.	1000	310 CMR 40.0983(2)c	

· 医克克克氏 医多种性 医二甲基甲基磺胺甲基氏 医复杂性 医二	122		
Selected from the highest of the following three values,	126	Source of Value	
Target Groundwater Concentration, ug/L.	126	Step 3.	
2. Site-specific background concentration, ug/L	0	assumed	
3. Practical Quantitation Limit (PQL), ug/L	0.4 to 1	U.S. EPA Method 8021	
And adjusted to Ceiling Concentration, ug/L			
Ceiling Concentration (ug/l):	50,000	310 CMR 40.0983(5)	
-			

Abbreviations:

CMR = Code of Massachusetts Regulations, 310 CMR 40.0000 is the Massachusetts Contingency Plan

DEP = Massachusetts Department of Environmental Protection

gw = groundwater

IRIS = Integrated Risk Information System www.epa.gov/iris

NA = Not Applicable or Not Available.

OHM = Oil or Hazardous Material

ORL_{50%} = Odor Recognition Threshold at which 50% of population can detect odor of chemical

PQL = Practical Quantitation Limit

RAIS = Risk Assessment information System http://risk.lsd.oml.gov

RfC = Reference Concentration

UR = Unit Risk

U.S. EPA = United States Environmental Protection Agency

DERIVATION OF MCP METHOD 2 GROUNDWATER (GW-3) STANDARD (µg/L) Chemical: Butyl Benzyl Phthalate

	N.					
Selected from the lowest of the following four values:	Value Used	Source of Value				
 Freshwater Acute Water Quality Criterion (μg/L): Freshwater Chronic Water Quality Criterion (μg/L): Marine Acute Water Quality Criterion (μg/L): Marine Chronic Water Quality Criterion (μg/L): 	NA 19 NA NA	NAWC as listed in Suter and Tsao, 1996 NAWC as listed in Suter and Tsao, 1996 NAWC as listed in Suter and Tsao, 1996 NAWC as listed in Suter and Tsao, 1996				
 Calculated by multiplying the lowest value from Step 1 by DF and AF. Groundwater to Surface Water Dilution factor (DF) Attenuation Factor (AF) Lowest value in Step 1. Ceiling Concentration (µg/L): 	Value Used 10 25 19 50,000	Source of Value 310 CMR 40.0983(4)b. DEP Proposed based on Koc 310 CMR 40.0983(5)				
	et Vige					
Selected from the lower of the following two values: 1. Target Groundwater Concentration (µg/L): 2. Background Concentration (µg/L): 3. Practical Quantitation Limit (µg/L):	Value Used 4,750 NA 2	Source of Value				
Abbreviations: CMR = Code of Massachusetts Regulations, 310 CMR 40.0000 is the Massachusetts Cont DEP = Massachusetts Department of Environmental Protection NA = Not Applicable or Not Available. NAWC = National Ambient Water Criteria	ingency Plan (MCP)					
Source:						
U.S Environmental Protection Agency (USEPA), 2002, National Recommended Water Qua	lity Criteria.					
Is this a "good" standard? Lowest Ecologically Based Criteria for Other Phthalates bis(2-ethylhexyl)phthalate diethylphthalate	160 ug/L 340 ug/L					

DERIVATION OF MCP METHOD 1 GROUNDWATER (GW-3) STANDARD (μg/L) Chemical: Silver

Selected from the lowest of the following four values:	Value Used	Source of Value
1. Freshwater Acute Water Quality Criterion (µg/L):	0.3	NAWQC as listed in EPA. 1996
1. Freshwater Chronic Water Quality Criterion (µg/L):	0.03	CMC(FW)/10
3. Marine Acute Water Quality Criterion (µg/L):	NA	
4. Marine Chronic Water Quality Criterion (µg/L):	1.9	NAWQC as listed in EPA, 1996

经验证的证据的证据的证据的证据的证据的证据的证据的证据的证据的证据的证据的证据的证据			23. 37. 6. 6. 6. 6.
1. Calculated by multiplying the lowest value from Step 1 by DF and AF.	Value Used	Source of Value	
Groundwater to Surface Water Dilution factor (DF)	10	310 CMR 40.0983(4)b.	
Attenuation Factor (AF)	2.5	DEP Proposed based on K	Сос
Lowest value in Step 1.	0.03	·	
2. Ceiling Concentration (µg/L):	50,000	310 CMR 40.0983(5)	

Selected from the highest of the following values:	Value Used	Source of Value
1. Target Groundwater Concentration (µg/L):	0.75	
2. Background Concentration (µg/L):	4.7	DEP. 2004, Toxicity,xls
3. Practical Quantitation Limit (µg/L):	7	Wagner, Ed. 1992,
		•

Abbreviations:

CMR = Code of Massachusetts Regulations, 310 CMR 40.0000 is the Massachusetts Contingency Plan (MCP)

DEP = Massachusetts Department of Environmental Protection

NA = Not Applicable or Not Available.

NAWQC = National Ambient Water Quality Criterion

Sources:

U.S Environmental Protection Agency (USEPA). 2002. National Recommended Water Quality Criteria.

USEPA. 1999. National Recommended Water Quality Criteria-Correction . EPA 822-Z-99-001

Guide to Environmental Analytical Methods, Robert E. Wagner, editor; Genium Publishing

Corporation, Schenectady, NY; 1992.

MADEP "Surface water benchmark for derivation of GW-3 Standard is selected according to following sequence:

- 1, Select lowest NAWQC for environmental effects in saltwater or freshwater (CMC, CCC).
- 2. If above unavailable, select lowest chronic value from AQUIRE as ecological benchmark.
- 3. If all above unavailable, select lowest acute value from AQUIRE as ecological benchmark.
- 4. If all above unavailable, select lowest chronic value from ORNL (Suter and Tsao, 1996) or others as ecological benchmark.
- 5. If all above unavailable, select lowest chronic Tier II value from ORNL (Suter and Tsao, 1996) or others as ecological benchmark.
- 6. If only an acute value has been selected after steps 1-5, divide the acute value by 10 to estimate a chronic value as ecological benchmark.
- 7. Select surface water benchmark as the lower of the selected ecological benchmark or the NAWQC for fish consumption."

Notes

Hardness dependent criteria, source document assumed 20 mg/L hardness, as CaCO3

DERIVATION OF MCP METHOD 2 S-1 SOIL STANDARD Chemical: Benzo (a) pyrene

Selected from the lowest of the following three values:	Value Used	Source of Value
1. Noncancer risk-based soil concentration [OHM]soil (mg/kg) calculated using the following equation: [OHM]soil = (RfD _{chronic} * 0.2 * C) + [(RAF _{orel} * 3.1) + (RAF _{dermel} * 28.5)]	1,341	Calculated
Where:		
RfD _{chronic} = Chronic Reference Dose published by U.S. EPA, mg/kg-day 0.2 = 20% source allocation factor	0.04 0.2	IRIS, September 2002. Value for fluoranthene 310 CMR 40.0984(2)
C = Units Conversion Factor, 10 ⁶ mg/kg.	1000000	310 CMR 40.0984(2)
RAF _{oral} = Relative Absorption Factor for oral exposures. Dimensionless.	0.91	MADEP, 1994 Background Documentation
RAF _{dermal} = Relative Absorption Factor for dermal exposures. Dimensionless.	0.18	MADEP, 1994 Background Documentation
3.1 = Average daily exposure to soil by oral pathway 28.5 = Average daily exposure to soil by dermal pathway	2.4 21	Proposed changes in exposure, MCP pre-public hearing draft, December 2001.
 Cancer risk-based soil concentration [OHM]soil (mg/kg) calculated using the following equation: [OHM]soil = (1 x 10⁴ ° C) + [CSF ° ((RAF_{oral} ° 0.41) + (RAF_{dammal} ° 7.3))] 	0.7	
Where:		
1 x 10 ⁻⁹ = A one-in-a-million Excess Lifetime Cancer Risk, Dimensionless. C = Units Conversion Factor, 10 ⁶ mg/kg.	0.000001 1000000	310 CMR 40.0984(3) 310 CMR 40.0984(3)
CSF = Cancer Slope Factor published by U.S. EPA, (mg/kg-day) ⁻¹	7.3	IRIS, September 2002.
RAF _{oral} = Relative Absorption Factor for oral exposures. Dimensionless.	0.28	DEP, 2004. Toxicity.xls (proposed)
RAF _{dermal} = Relative Absorption Factor for dermal exposures. Dimensionless.	0.02	DEP, 2004. Toxicity.xls (proposed)
0.41 = Lifetime average daily exposure to soil by oral pathway	0.38	. , , , , , , , , , , , , , , , , , , ,
7.3 = Lifetime average daily exposure to soil by dermal pathway	4.1	Proposed changes in exposure, MCP pre-public hearing draft, December 2001.
 Leaching-based soil concentration [OHM]soil (mg/kg): calculated using the following equation; [OHM]soil = DAF * [OHM]gw * C 	1	
Where:		
[OHM]soil = The leaching-based soil concentration (mg/kg) DAF = Dilution/Attenuation Factor calculated for the chemical. Dimensionless. [OHM]gw = Target groundwater concentration of the chemical (ug/l) C = Conversion factor, 0.001 mg/ug	1 472 2 0.001	Method 1 GW-3 Standard
The DAF is calculated using the following equation: DAF = (6270 ° H) + (0.166 ° Koc)	0.001	
H = Henry's Law Constant for the chemical (atm-m³/mol)		U.S. EPA, Hazardous Waste Treatment, Storage and Disposal Facilities (TSDF)- Air Emission Models, December 1987.
	0.0146	
Koc = Organic carbon partition coefficient for the chemical (ml/g)	2290.86	RAIS, August 2000

DERIVATION OF MCP METHOD 2 S-1 SOIL STANDARD Chemical: Benzo (a) pyrene

Selected from the highest of the following three values.	2	Source of Value
Risk-Based Soil Concentration, mg/kg	0.7	Step 1.
2. MADEP Identified Background Concentration in Soil, mg/kg	2	MADEP 2002
3. Practical Quantitation Limit (PQL), mg/kg	0.66	MADEP 1994
And adjusted to Ceiling Concentration, mg/kg		
Ceiling Concentration (mg/kg) calculated using the following equation:	1,000	310 CMR 40.0984(9)(a)3.
Odor Index = VP + ORL _{50%}	NC	• • • • • • • • • • • • • • • • • • • •
Where:		
***************************************		MADEP, 1994, Background Documentation for the Development of the MCP Numerical
VP = Vapor pressure of chemical, units of Torr	5.00E-09	Standards. April.
ORL _{smx} = Odor Recognition Threshold at which 50% of population can detect		
odor of chemical, ppm	NA	

Abbreviations:

CMR = Code of Massachusetts Regulations, 310 CMR 40.0000 is the Massachusetts Contingency Plan

CSF = Cancer Slope Factor

DAF = Dilution Attenuation Factor

DEP = Massachusetts Department of Environmental Protection

gw = groundwater

IRIS = Integrated Risk Information System www.epa.gov/iris

NA = Not Applicable or Not Available.

OHM = Oil or Hazardous Material

ORLane = Odor Recognition Threshold at which 50% of population can detect odor of chemical

PQL = Practical Quantitation Limit

RAIS = Risk Assessment Information System http://risk.lsd.oml.gov

RAF = Relative Absorption Factor

RfD = Reference Dose

U.S. EPA = United States Environmental Protection Agency

VP = Vapor Pressure

DERIVATION OF MCP METHOD 2 S-2/GW-2 SOIL STANDARD Chemical: Naphthalene

Selected from the lowest of the following three values:	Value Used	Source of Value
1. Noncancer risk-based soil concentration [OHM] _{soil} (mg/kg)		
calculated using the following equation:	2,462	
$[OHM]$ soil = $(RfD_{chronic} * 0.2 * C) \div [(RAF_{oral} * 0.29) + (RAF_{dermal} * 15.2)]$		
Where:		
RfD _{chronic} = Chronic Reference Dose, mg/kg-day	0.02	(1)
0.2 = 20% source allocation factor	0.2	(2)
C = Units Conversion Factor, 10 ⁶ mg/kg.	1000000	(2)
RAF _{oral} = Relative Absorption Factor for oral exposures. Dimensionless.	0.36	(3)
RAF _{dermal} = Relative Absorption Factor for dermal exposures. Dimensionless.	0.1	(3)
Average daily exposure to soil by oral pathway	0.29	(4)
Average daily exposure to soil by dermal pathway	15.2	(4)
2. Cancer risk-based soil concentration [OHM] _{soll} (mg/kg)		
calculated using the following equation:	NA	
$[OHM]$ soil = $(1 \times 10^{-6} * C) + [CSF * ((RAF_{oral} * 0.11) + (RAF_{dermal} * 5.48))$		
Where:		
1 x 10 ⁻⁶ = A one-in-a-million Excess Lifetime Cancer Risk. Dimensionless.	1.0E-06	(5)
C = Units Conversion Factor, 10 ⁶ mg/kg.	1.0E+06	(5)
CSF = Cancer Slope Factor published by U.S. EPA, (mg/kg-day) ⁻¹	NA	,
RAF _{oral} = Relative Absorption Factor for oral exposures. Dimensionless.	NA	
RAF _{dermal} = Relative Absorption Factor for dermal exposures. Dimensionless.	NA	
Lifetime average daily exposure to soil by oral pathway	0.11	(4)
Lifetime average daily exposure to soil by dermal pathway	5.48	(4)

DERIVATION OF MCP METHOD 2 S-2/GW-2 SOIL STANDARD Chemical: Naphthalene

3. Leaching-based soil concentration [OHM] _{soil} (mg/kg): calculated using the following equation: [OHM] _{soil} = DAF * [OHM] _{gw} * C	192	
Where: DAF = Dilution/Attenuation Factor calculated for the chemical. Dimensionless.	32	(6)
[OHM] _{gw} = Target groundwater concentration of the chemical (ug/l)	6,000	(7)
C = Conversion factor, 0.001 mg/ug	0.001	

Selected from the highest of the following three values, rounded		Source of Value
Risk-Based Soil Concentration, mg/kg	192	Step 1.
2. MADEP Identified Background Concentration in Soil, mg/kg	0.5	(11)
3. Practical Quantitation Limit (PQL), mg/kg	0.66	(8)
And adjusted to Ceiling Concentration, mg/kg		
Ceiling Concentration (mg/kg) calculated using the following equation:	5,000	(10)
Odor Index = VP + ORL _{50%}	0.98	
Where:		
VP = Vapor pressure of chemical, units of Torr	0.082	(8)
ORL _{50%} = Odor Recognition Threshold at which 50% of population can detect		
odor of chemical, ppm	0.084	(8)

DERIVATION OF MCP METHOD 2 S-2/GW-2 SOIL STANDARD Chemical: Naphthalene

Abbreviations:

NA = Not Applicable or Not Available. NC = Not Calculated. OHM = Oil or Hazardous Material

Sources:

- (1) United States Environmental Protection Agency (USEPA) Integrated Risk Information System (IRIS), May 2003. http://www.epa.gov/IRIS
- (2) 310 CMR 40.0984(2) of the Massachusetts Contingency Plan
- (3) Massachusetts Department of Environmental Protection (MADEP), 2001. "MCP Toxicity.xls"
- (4) 310 CMR 40.0984(2)c (noncancer) and 310 CMR 40.0984(3)c (cancer)
- (5) 310 CMR 40.0984(3) of the Massachusetts Contingency Plan
- (6) 85th Percentile DAF from MADEP Probablistic Study.
- (7) MCP GW-3 standard (310 CMR 40.0974(2))
- (8) MADEP, 1994. Background Documentation for the Development of the MCP Numerical Standards. April.
- (9) 310 CMR 40.0984(9)(c)2 of the Massachusetts Contingency Plan
- (10) 310 CMR 40.0984(9)(c)3 of the Massachusetts Contingency Plan.
- (11) MADEP, 2002. "Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil," Technical Update to Section 2.3, Guidance for Disposal Site Risk Characterization In Support of the Massachusetts Contingency Plan (1995). May.

Beyond Method 2... Revised ShortForms In Support of MCP Method 3 Risk Assessments

Andrew Friedmann, Ph.D.

Office of Research and Standards, MassDEP andrew.friedmann@state.ma.us

Goals for Revised ShortForm (continued)

- Provide ShortForms for additional scenarios
 - construction worker
 - landscape worker
 - recreational child
 - trespasser

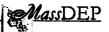
Intended Use of Revised ShortForm

- Risk calculation portion of Method 3 risk assessment
- Designed to be used by risk assessors to conduct risk assessments
- Provide documentation tables for a Method 3 risk assessment report

General Description

Set of Excel workbooks

- VLookup workbook (v0705) database
- Exposure scenario workbooks (e.g., sf05dw, sf05rs)



General Description

(continued)

VLookup workbook

- Database that contains chemical-specific information
- Provides data to Exposure Scenario Workbooks using 'name recognition'
- Not printable

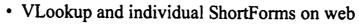
General Description (continued)

Exposure scenario workbooks

- · Scenario workbooks calculate risks
- Scenario workbooks are receptor- and medium-specific
- Scenario worksheets provide print-ready tables with complete documentation

General Description

(continued)


Scenario workbooks contain most relevant exposure pathways

For example:

- Residential Soil (rs) covers
 - ingestion, dermal contact, produce consumption
- Residential Drinking Water (dw) covers
 - ingestion, showering

Living Document

*

Always check for latest version

Version number listed in tables

Limitations

- ShortForms do not cover all exposure pathways
- Exposure assumptions are not site-specific
- Validity of results dependent upon good EPCs
- ShortForms do not write the report

MassDEP

Limitations

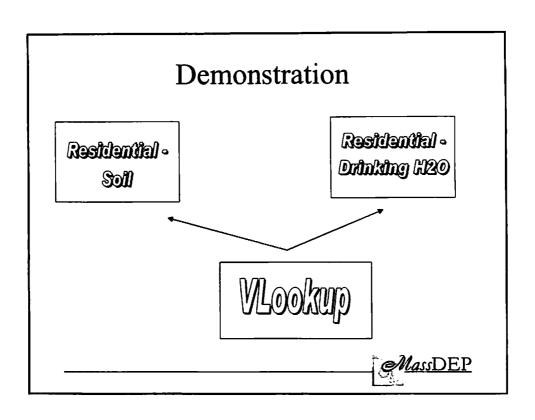
Only part of the Risk Assessment

- Hazard Identification
- Dose-Response Assessment
- Exposure Assessment
- Risk Characterization

Limitations (continued)

Still need a risk assessor!

Differences from Old ShortForm


- · Comparison to background not included
- Variety of receptors provided
- Chemical-specific values updateable by ORS

Differences from Old ShortForm (continued)

- Uses dermal uptake and inhalation model for shower exposure
- Ready-to-print documentation provided

Method 3 Risk Assessment for Chemicals in Drinking Water Shortform 2005 (sf05dw)

Index

Tab		
EPCs	Tabel DW-1:	Select chemcials and enter Exposure Point Concentrations (EPCs). Associated risks are shown to the right.
C Eq	Table DW-2:	Equations to calculate cancer risks.
NC Eq	Table DW-3:	Equations to calculate noncancer risks.
DA Eq	Table DW-4:	Equations to calculate Absorbed Dermal Dose.
DA	Table DW-5:	Dermai Absorbed Dose from Showering
IECs Eq	Table DW-6:	Equations to calculate Inhalation Exposure Concentrations in the shower.
IECs .	Table DW-7:	Inhalation Exposure Concentration in the Shower
Exp	Table DW-8:	Definitions and exposure factors.
Chem	Table DW-9:	Chemical-specific data.

Questions and Comments may be addressed to:

Andrew Friedmann, Ph.D.

Massachusetts Department of Environmental Protection

Office of Research and Standards One Winter Street - 7002

Boston, MA 02108 USA Telephone: (617) 292-5841 Fax: (617) 556-1006

Email: andrew.friedmann@state.ma.us

Vlookup Version v0705

Drinking Water: Table DW-1

Exposure Point Concentration (EPC) and Risk

Based on Resident Ages 1-31 (Cancer) and 1-6 (Noncancer)

Do not insert or delete any rows

Click on empty cell below and select OHM using arrow.

ELCR (a	ll chemicals)	= 1.E-05
HI (a	li chemicals)	- 1

Oil or Hazardous	EPC	ELCR	ELCR	ELCR			Chronic		
Material (OHM)	(μg/L)	ingestion	dermal	iskalation	ELCR _{total}	HQ _{iag}	HQ _{derm}	HQ _{inh}	HQtotal
Benzene	5.0E-01	5.1E-07	7.6E-08	1.3E-06	1.9E-06	7.4E-03	1.2E-03	1.5E-02	2.3E-02
Benzo(a)pyrene	2.0E-02	2.7E-06	3.0E-06	4.9E-08	5.7E-06	3.6E-05	4.3E-05	1.3E-06	8.0E-05
Dichloroethylene, 1,1-	2.0E+01					2.4E-02	3.0E-03	8.5E-02	1.1E-01
Ethylbenzene	3.0E+00					1.8E-03	1.0E-03	2.4E-03	5.2E-03
Fluoranthene	3.0E+00					4.4E-03	9.6E-04	2.8E-03	8.2E-03
Hmx	2.0E+00					2.4E-03	1.5E-05	7.7E-14	2.4E-03
Indeno(1,2,3-cd)pyrene	5.0E-02	6.8E-07	7.4E-07	1.7E-08	1.4E-06	8.9E-05	1.1E-04	4.3E-06	2.0E-04
Naphthalene	5.0E+00					1.5E-02	1.0E-02	9.2E-01	9.4E-01
C11 to C22	2.0E+00					3.6E-03			3.6E-03
Rdx	1.0E+00	2.1E-06	1.6E-08	4.0E-07	2.5E-06	2.0E-02	1.6E-04	3.2E-03	2.3E-02
Toluene	2.0E+00					5.9E-04	1.9E-04	4.2E-03	5.0E-03
Trichloroethane, 1,1,2-	1.0E-01	1.1E-07	9.1E-09	3.7E-07	4.9E-07	1.5E-03	1.3E-04	8.5E-04	2.4E-03
Trichloroethylene	2.0E+00	4.1E-07	6.3E-08	9.5E-07	1.4E-06	5.9E-02	9.3E-03	8.3E-03	7.7E-02
Vinyl chloride	1.0E-02	4.0E-07	2.0E-08	3.2E-08	4.5E-07	2.0E-04	1.0E-05	9.9E-05	3.1E-04
Xylenes (mixed isomers)	1.0E+01					2.9E-03	1.8E-03	1.3E-01	1.4E-01

MASK , 15 .

Within (Fice)

Vlookup Version v0705

Drinking Water: Table DW-2 Equations to Calculate Cancer Risk for Resident (Age 1-31 years)

Cancer Risk from Ingestion		
ELCR _{ing} = LADD _{ing(1-31)} * CSF		
$LADD_{ing\{1-31\}} = LADD_{ing\{1-8\}} + LADD_{ing\{8-15\}} + LADD_{ing\{15-31\}}$		
LADD _{ing (age group x)} = EPC ° VI _x ° RAF _{c-ing} ° EF ° ED _{ing} ° EP _x ° C BW _x ° AP _{tifetime}		
Cancer Risk from Dermal Absorption		
ELCR _{derm} = LADD _{derm(1-31)} * CSF		
$LADD_{derm(1-31)} = LADD_{derm(1-2)} + LADD_{derm(8-15)} + LADD_{derm(15-31)}$		
LADD _{derret} age group x) = $\frac{DA_x \circ SA_x \circ EF \circ ED_{derret} \circ EP_x}{OAE_c \circ BW_x \circ AP_{lifetime}}$		
or, if outside "Effective Predictive Domain", then		
$LADD_{derm(age:graup:x)} = \frac{EPC \circ VI_x \circ EF \circ ED_{derm} \circ EP_x \circ DM \circ C}{OAE_c \circ BW_x \circ AP_{latetime}}$		
Cancer Risk from Inhalation		
ELCR _{inh} = LADE ₍₁₋₃₁₎ , * URF		
$LADE_{(1-3)} = LADE_{(1-8)} + LADE_{(8-15)} + LADE_{(15-31)}$		
$LADE_{lase x} = \frac{IEC_{g,x} \circ EF \circ ED_{lash x} \circ EP_{x}}{IEC_{g,x} \circ EF \circ ED_{lash x} \circ EP_{x}}$		

LADE(age x)=-

Parameter	Value	Units
CSF	OHM-specific	(mg/kg-day) ⁻¹
URF	OHM-specific	(µg/m³) ⁻¹
LADD	age/OHM-specific	mg/kg-day
LADE	age/OHM-specific	µg/m³
EPC	OHM-specific	μg/L
VI ₍₁₋₈₎	1	L/day
VI ₍₈₋₁₅₎	2	L∕day
VI(15-31)	2	L/day
RAF _{c-ing}	OHM-specific	dimensionless
EF	1	event/day
ED _{ing & derm}	1	day/event
ED _{inh(1-8)}	0.046	day/event
ED _{inh(8-15)}	0.046	day/event
ED _{inh(15-31)}	0.044	day/event
EP ₍₁₋₈₎	7	years
EP(8-15)	7	years
EP(15-31)	16	years
С	0.001	mg/μg
BW ₍₁₋₈₎	17	kg
BW ₍₈₋₁₅₎	39.9	kg
BW ₍₁₅₋₃₁₎	58.7	kg
AP(lifetime)	70	years
IEC _{S-x}	age/OHM-specific	μg/m³
DA _x	age/OHM-specific	mg/cm²
OAE	OHM-specific	dimensionless
SA ₍₁₋₈₎	7130	cm²
SA ₍₈₋₁₅₎	12800	cm²
SA ₍₁₅₋₃₁₎	16731	cm²
DM	OHM-specific	dimensionless

Vlookup Version v0705

Drinking Water: Table DW-3

Equations to Calculate Noncancer Risk for Resident Child (Age 1-8 years)

Noncancer Risk from	Noncancer Risk from Ingestion				
HQ _{ing} =	ADD _{ing}				
ADD _{ing} =	EPC • VI • RAF _{ac-ing} • EF • ED _{ing} • EP • C BW • AP				
Noncancer Risk from	Noncancer Risk from Dermal Absorption				
HQ _{derm} =	ADD _{derm}				
ADD _{derm} =	DA • SA • EF • ED _{deern} • EP OAE _{nc} • BW • AP				
or, if DA is outs	or, if DA is outside the "Effective Predictive Domain" of the dermal model, then				
ADD _{derm} =	EPC • VI • EF • ED _{derm} • EP • DM • C OAE _{ne} • BW • AP				
Noncancer Risk from	oncancer Risk from Inhalation				
HQ _{inb} =	ADE RfC				
ADE =	IECs * EF * ED _{inh} * EP * C				

Parameter	Value	Units
RſD	OHM-specific	mg/kg-day
RfC	OHM-specific	mg/m³
ADD _{ing}	OHM-specific	mg/kg-day
ADD _{derm}	OHM-specific	mg/kg-day
ADE	OHM-specific	mg/m₃
EPC	OHM-specific	μ g/L
VI	1	L/day
RAF _{nc-ing}	OHM-specific	dimensionless
RAF _{nc-derm}	OHM-specific	dimensionless
EF	1	event/day
ED _{ing}	1	day/event
ED _{derm}	1	day/event
ED _{inh}	0.046	day/event
EP	7	years
С	0.001	mg/μg
вw	17	kg
AP _(noncancer)	7	years
IEC _s	OHM-specific	μg/m³
DA	OHM-specific	mg/cm ² -shower
OAE _{nc}	OHM-specific	dimensionless
SA	7130	cm ²
DM	OHM-specific	dimensionless

Equations to Calculate Absorbed Dermal Dose from Showering (DA)

Model equations obtained from U.S. EPA (2001) Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim (http://www.epa.gov/superfund/programs/risk/ragse/).

Steady State versus Non-Steady State for Organic Chemicals: The time for an organic chemical to reach steady state is a function of the chemical's molecular weight (MW) and it's ability to traverse skin (expressed as a permeability constant, Kp). If an organic chemical does not reach steady state before the shower is over (i.e., time to reach steady state, t*, is greater than the shower duration, D_t), Equation (1) is used to calculate the dermal dose for this non-steady state. For organic chemicals that have reached a steady state by the end of the shower, Equation (2) is used to calculate dermal dose.

Effective Predictive Domain: The model is not used for organic chemicals that fall outside its effective predictive domain. Strictly, chemicals with very large or very small Kow values are outside of the EPD. Chemicals outside the Effective Predictive Domain are identified with an asterix in Tables B-2 and B-3 in the above citation as well as in Table V2 in the Vlookup (V) workbook.

For these chemicals, the dermal dose is estimated as a function of the oral dose according to MA DEP (1995) Guidance for Disposal Site Risk Characterization and Equation (3) below. Note that the dermal dose in these cases are calculated as an average daily dose (ADD) or life-time average daily dose (LADD) and expressed in mg/kg-bw. Equation (3) is also presented in Tables DW-2 and DW-3.

(1) Organic Chemicals Inside Effective Predictive Domain - Non-Steady State Equation for estimating dermally absorbed dose (DA) for organic chemicals when the shower duration (D_s) is less than or equal to the time to reach steady state (t*).

$$DA = 2 * FA * C * Kp * Cw * \sqrt{\frac{6 * \tau * D_s}{\pi}}$$

(2) Organic Chemicals Inside Effective Predictive Domain - Steady State

Equation for estimating DA for organic chemicals when D, is greater than the time to reach t*.

$$DA = FA \cdot C \cdot Kp \cdot Cw \cdot \left[\left(\frac{D_s}{1+B} \right) + 2 \cdot r \cdot \left(\frac{1+3B+3B^2}{(1+B)^2} \right) \right]$$

(3) Organic Chemicals Outside Effective Predictive Domain

$$(L)ADD = \frac{EPC \cdot VI \cdot EF \cdot ED_{dem} \cdot EP \cdot DM \cdot C}{OAE \cdot BW \cdot AP}$$

(4) Inorganic Chemicals

Equation for estimating DA for inorganic chemicals in water.

$$DA = C * Kp * Cw * D_s$$

Where the equations to calculate the input values are:

(a) Equation for predicting strateum corneum permeability constant (Kp) for organic chemicals:

$$Kp = 10$$
 $\left(-2.8 + 0.67 \cdot \log Kow - 0.0056 \cdot MW\right)$

(b) Equation for calculating ratio of permeability of chemical in strateum corneum to permeability in viable epidermis (B)

$$B = Kp * \frac{\sqrt{MW}}{2.6}$$

(c) Calculations for calculating time to reach steady state (t*):

When B is less than or equal to 0.6

When B is greater than 0.6

$$t^* = 2.4 r$$
 $t^* = \left(b - \sqrt{b^2 - c^2}\right) \cdot \frac{t_{sc}^2}{D_{sc}}$

Vlookup Version v0705

Drinking Water: Table DW-4 Equations to Calculate Absorbed Dermal Dose from Showering (DA)

(d) Equations for calculating b and c

$$c = \frac{1+3B+3B^2}{3^*(1+B)}$$

$$b = \frac{2(1+B)^2}{\pi} - c$$

(e) Equation for calculating lag time (τ)

$$\tau = \frac{I_{sc}^2}{6 \cdot D_{sc}}$$

(f) Equation for calculating effective diffusivity (D_{sc})

$$D_{sc} = 10^{-2.8 - (0.0056 * MW)} \cdot l_{sc}$$

Parameter	Value	Units	Notes
DA _{event} - Absorbed dose per event per area skin exposed	calculated	mg/cm ² -event	see Table DW-4 and DW-5
FA - Fraction absorbed	OHM-specific	dimensionless	see Table DW-5
Kp - Strateum comeum (sc) permeability constant	OHM-specific	cm/hr	see Table DW-9
C - Conversion Factor	0.000001	m³/cm³	
C _w - {OHM] in water	OHM-specific	mg/m³	see Table DW-1
τ - Lag time	calculated	hrs	Time for chemical to cross strateum corneum
			(Table DW-5)
D _s - Shower Duration	age-specific	hrs	see Table DW-6
LogK _{ow} - Octanol/water partition coefficient	OHM-specific	dimensionless	see Table DW-9
MW - Molecular Weight	OHM-specific	g/mole	see Table DW-9
t* - Time to reach steady state	calculated	hr	see Table DW-5
b - Empirical variable used to calculate t*	calculated	dimensionless	see Table DW-5
c - Empirical variable used to calculate t*	calculated	dimensionless	see Table DW-5
l _{sc} - Thickness of skin	0.001	cm	MA DEP (1995). Guidance for Disposal
			Site Risk Characterization. Appendix Table B-9.
D _{sc} - Effective diffusivity for chemical	calculated	cm²/hr	see Table DW-5
transfer through the skin			
B - Ratio of permeability of chemical in strateum corneum	calculated	dimensionless	see Table DW-5
to permeability of chemical in viable epidermis			1

Dermal Absorded Dose (DA) from Showering

	Ratio of perm.		Effective	Time to									Absorbed	Absorbed	Absorbed	
	in strateum	Lag	Diffusivity of	Reach			1	Absorbed	Absorbed	Absorbed			Dose	Dose	Dose	
1	comeum to	Time	Chemical	Steady				Dosc	Dose	Dose	Outside		(1-8)	(8-16)	(16-31)	
1	viable	(tau)	Transfer	State	t•			(1-8)	(8-16)	(16-31)	Effective	Fraction	w/ FA term	w/ FA term	w/ FA term	Dermai
Oil or	epidermis		Through Skin	ţ*	when			DA	DA	DA	Predictive	Absorbed	DA ₍₁₋₄₎	DA ₍₈₋₁₄₎	DA(1631)	Mult
Hazardous Material	В	hours	Dac	hours	B>0.6	b	c	(mg/cm²)	(mg/cm²)	(mg/cm²)	Domain	FA	(mg/cm²)	(mg/cm²)	(mg/cm²)	DM
Benzene	5.26E-02	0.288	5.80E-07	0.69		3.4E-01	3.7E-01	1.2E-08	1.1E-08	8.5E-09		ı	1.15E-08	1.10E-08	8.49E-09	
Benzo(a)pyrene	4.59E+00	2.710	6.15E-08	11.81	11.81	1.5E+01	4.6E+00	6.0E-08	5.7E-08	5.1E-08	•	1	5.97E-08	5.73E-08	5.06E-08	1
Dichloroethylene, 1,1-	4.60E-02	0.367	4.54E-07	0.88		3.3E-01	3.6E-01	3.5E-07	3.4E-07	3.0E-07		- 1	3.55E-07	3.41E-07	3.01E-07	
Ethylbenzene	2.06E-01	0.413	4.04E-07	0.99		4.4E-01	4.8E-01	2.4E-07	2.3E-07	2.1E-07		1	2.42E-07	2.33E-07	2.05E-07	
Fluoranthene	1.33E+00	1.422	1.17E-07	5.59	5.59	2.0E+00	1.5E+00	2.1E-06	2.0E-06	1.8E-06	•	1	2.10E-06	2.01E-06	1.78E-06	0.2
Hmx	3.44E-04	4.793	3.48E-08	11.50		3.0E-01	3.3E-01	5.SE-10	5.3E-10	4.6E-10		1	5.49E-10	5.27E-10	4.65E-10	
Indeno(1,2,3-cd)pyrene	7.39E+00	3.694	4.51E-08	16.53	16.53	3.7E+01	7.4E+00	2.7E-07	2.6E-07	2.3E-07	•	0.6	1.61E-07	1.54E-07	1.36E-07	ı
Naphthalene	2.15E-01	0.548	3.04E-07	1.31		4.5E-01	4.9E-01	4.4E-07	4.2E-07	3.7E-07		1	4.42E-07	4.24E-07	3.74E-07	
C11 to C22		0.728	2.29E-07			3.0E-01	3.3E-01									
Rdx	1.98E-03	1.847	9.02E-08	4.43		3.0E-01	3.3E-01	1.1E-09	1.1E-09	9.6E-10		1	1.13E-09	1.09E-09	9.59E-10	
Toluene	1.20E-01	0.344	4.84E-07	0.83		3.8E-01	4.2E-01	9.2E-08	8.9E-08	7.8E-08		ı	9.25E-08	8.88E-08	7.83E-08	
Trichloroethane, 1,1,2-	2.99E-02	0.584	2.85E-07	1.40		3.2E-01	3.5E-01	1.2E-09	1.2E-09	1.1E-09		ı	1.24E-09	1.19E-09	1.05E-09	
Trichloroethylene	5.39E-02	0.569	2.93E-07	1.37		3.4E-01	3.7E-01	4.5E-08	4.3E-08	3.8E-08		1	4.46E-08	4.28E-08	3.78E-08	
Vinyl chloride	1.75E-02	0.237	7.03E-07	0.57		3.1E-01	3.5E-01	7.3E-11	7.0E-11	5.7E-11		t	7.33E-11	6.99E-11	5.70E-11	
Xylenes (mixed isomers)	2.23E-01	0.413	4.04E-07	0.99		4.6E-01	5.0E-01	8,7E-07	8.4E-07	7.4E-07		- 1	8.72E-07	8.37E-07	7.39E-07	

Equations to Calculate Inhalation Exposure Concentration in the Shower (IECs)

Vlookup Version v0705

Model equations obtained from Foster, S.A. and Chrostowski, P.C. (1987) Inhalation Exposures to Volatile Organic Contaminants in the Shower. Presentation at the 80th Annual Meeting of APCA. New York, NY. June 21-26, 1987.

(1) Inhalation Exposure Concentration in the Shower.

$$IECs = \left(\frac{S}{R_{co}} \times \left(D_s + \frac{e^{-R_{co}D_t}}{R_{co}} - \frac{e^{R_{co}(D_s - D_t)}}{R_{co}}\right) \times n\right) + D_t$$

Where the equations to calculate the input values are:

(a) Indoor Air Generation Rate

$$S = \frac{C_{wd} \times FR}{SV}$$

(b) Concentration Leaving Water Droplet

$$C_{wd} = C_{w0} (1 - e^{\frac{-K_{el} \times l_r}{60d}})$$

(c) Adjusted Mass Transfer Coefficient

$$K_{aL} = K_L \times \sqrt{\frac{T_l \times \mu_s}{T_s \times \mu_l}}$$

(d) Overall Mass Transfer Coefficient

$$K_{L} = \left(\frac{1}{k_{i}} + \frac{R \times T}{HLC \times k_{z}}\right)^{-1}$$

(e) Liquid Film Mass Transfer Coefficient

$$K_{L} = \left(\frac{1}{k_{I}} + \frac{R \times T}{HLC \times k_{g}}\right)^{-1}$$

(f) Gas Film Mass Transfer Coefficient

$$k_{g} = k_{g}(H_{2}O) \times \sqrt{\frac{MW_{H2O}}{MW_{VOC}}}$$

Equations to Calculate Inhalation Exposure Concentration in the Shower (IECs)

Parameter	Value	Units	Notes
IECs - Inhalation Exposure Concentration in shower	calculated	μg/m³	see Table DW-7
S - Indoor air generation rate	calculated	μg/m³-min	see Table DW-7
R _{ac} - Air Exchange Rate	8.33E-03	1/min	MADEP. 1995. Guidance for Disposal Site Risk
			Characterization. Appendix Table B-9.
D Shower Duration for age group 1-8	45.7	min	see Table DW-8
• •	0.76	hour	see Table DW-8
D _t - Total Time in Shower Room	65.7	min	see Table DW-8
for age group 1-8			
D, - Shower Duration	42.1	min	see Table DW-8
for age group 8-15	0.70	hr	see Table DW-8
D ₁ - Total Time in Shower Room	66.4	min	see Table DW-8
for age group 8-15			
D _s - Shower Duration	32.8	min	see Table DW-8
for age group 15-31	0.55	hr	see Table DW-8
D _i - Total Time in Shower Room	62.8	min	see Table DW-8
for age group 15-31			
C _{wd} . Concentration leaving water droplet	calculated	μg/l	see Table DW-7
FR - Shower Flow Rate	10	1/min	MADEP. 1995. Guidance for Disposal Site Risk
			Characterization. Appendix Table B-9.
SV - Shower room air volume	6	m³	Ibid
C _{wo} - Shower water concentration	OHM-specific	μg/l	EPC. See Table DW-1
K _{al.} - Adjusted mass transfer coefficient	calculated	cm/hr	see Table DW-7
t, - Shower droplet time	2	seconds	MADEP. 1995. Guidance for Disposal Site Risk
			Characterization. Appendix Table B-9.
d - Droplet diameter	j i	mm	lbid
60d = Droplet interfacial area	60	cm/hr-seconds	the specific interfacial area, 6/d, for a spherical droplet
			of diamter d (mm), multiplied by conversion factors,
		0	hr/3600 seconds and 100 mm/cm see Table DW-7
K _L - Overall mass transfer coefficient	calculated 293	cm/hr °K	
T1 = Calibration water	293	- ~	MADEP. 1995. Guidance for Disposal Site Risk Characterizaiton. Appendix Table B-9.
temperature of K _L	0.596		Ilbid
μs - Water viscosity at Ts	318	cp °K	lbid
T, - Shower water temperature	1.002		lbid
μ ₁ - Water viscosity at T ₁	calculated	cp cm/hr	see Table DW-7
k ₁ - Liquid film mass transfer coefficient	1		
R - Universal Gas Constant	8.2E-05	atm-m³/mol-°K	MADEP. 1995. Guidance for Disposal Site Risk Characterizaiton. Appendix Table B-9.
T - Absolute temperature	293	°K	Ibid
HLC - Henry's Law Constant	OHM-specific	atm-m³/mol	see Table DW-7
k _g - Gas-film mass transfer coefficient	calculated	cm/hr	see Table DW-7
k ₁ (CO ₂) - Liquid-film mass transfer coefficient, CO ₂	20	cm/hr	MADEP. 1995. Guidance for Disposal Site Risk
Infooth and and any and any and any and any]		Characterizaiton. Appendix Table B-9.
MW _{CO2} - Molecular weight of CO ₂	44	g/mole	Ibid
MW _{VOC} - Molecular Weight of OHM	OHM-specific	_	Ibid
k _a (H ₂ O) - Gas-film mass transfer coefficient, water	3000	cm/hr	Ibid
MW _{H2O} - Molecular weight of water	18	g/mole	Ibid
141 14 H3O - Haloicediai MeiBur of Marei	1 10	Pillott	Tions

Inhalation Exposure Concentration in the Shower (IECs)

					INTERIM C	ALCULATIONS	3				
	Henry's		gas-film	liquid-film	Overall	Adjusted	Concentration	Indoor Air	lahalatios	Inhalation	inhalation
	Law	Molecular	mass transfer	mass transfer	Mass Transfer	Mass Transfer	Leaving	Generation	Exposure	Exposure	Exposure
	Constant	Weight	coefficient	coefficient	Coefficient	Coefficient	Water Droplet	Rate	Concentration	Concentration	Concentration
Oil or	HLC	MW	k _g	k _i	K _L	K _{ef.}	C _{w4}	s	IEC _{a(1-0)}	IEC ₈₍₈₋₁₅₎	IEC ₈₍₁₅₋₃₁₎
Hazardous Material	atm-m3/mol	g/mole	(cm/hr)	(cm/hr)	(cm/hr)	(cm/hr)	(μg/l)	(µg/(m3-min))	(h8/m ₁)	(hg/m³)	(µg/m³)
Benzene	5.55E-03	78	1441.15	15.02	14.37	19.41	2.4E-01	4,0E-01	9,8E+00	9.4E+00	7.9E+00
Benzo(a)pyrene	1.13E-06	252	801.78	8.36	0.04	0.05	3.4E-05	5.6E-05	1.4E-03	1.3E-03	1.1 E-03
Dichloroethylene, 1,1-	2.61E-02	9 7	1292.32	13.47	13.34	18.02	9.0E+00	1.5E+01	3.7E+02	3.6E+02	3.0E+02
Ethylbenzene	7.88E-03	106	1236.25	12.89	12.49	16.87	1.3E+00	2.2E+00	5.3E+01	5.1E+01	4.3E+01
Fluoranthene	1.61E-05	202	895.53	9.33	0.56	0.76	7.5E-02	1.3E-01	3.1E+00	3.0E+00	2.5E+00
Hmx	2.60E-15	296.2	739.55	7.71	0.00	0.00	7.2E-12	1.2E-11	3.0E-10	2.8E-10	2.4E-10
Indeno(1,2,3-cd)pyrene	1.60E-06	276	766.13	7.99	0.05	0.07	1.1E-04	1.9E-04	4.7E-03	4.5E-03	3.8E-03
Naphthalene	4.83E-04	128	1125.00	11.73	7.72	10.43	1.5E+00	2.4E+00	6.0E+01	5.8E+01	4.9E+01
C11 to C22		150	1039.23	10.83							

Drinking Water: Table DW-8 Definitions and Exposure Factors

		•	
Parameter	Value	Units	Notes
ELCR - Excess Lifetime Cancer Risk	chemical specific	1	Pathway specific (ing =ingestion, derm=dermal, inh=inhalation)
HI - Hazard Index	chemical specific	dimensionless	
CSF - Cancer Slope Factor	chemical specific		see Table DW-9
URF - Unit Risk Factor	chemical specific	(μg/m³) ⁻¹	see Table DW-9
RfD - Reference Dose	chemical specific	mg/kg-day	see Table DW-9
RfC - Reference Concentration	chemical specific	μg/m²	see Table DW-9
LADD - Lifetime Average Daily Dose	chemical specific		Pathway specific. See Table DW-2
LADE - Lifetime Average Daily Exposure	chemical specific		see Table DW-2
ADD - Average Daily Dose	chemical specific	, -	Pathway specific. See Table DW-3.
ADE - Average Daily Exposure	chemical specific		Pathway specific. See Table DW-3.
EPC - Exposure Point Concentration	chemical specific		see Table DW-1
VI ₍₁₋₈₎ - Volume Ingested for age group 1-8	1	L/day	MADEP. 1995. Guidance for Disposal Site Risk
			Characterization. Appendix B-9.
VI ₍₈₋₁₅₎ - Volume Ingested for age group 8-15	2	L/day	Ibid
VI ₍₁₅₋₃₁₎ - Volume Ingested for age group 15-31	2	L∕day	Ibid
RAF _c - Relative Absorption Factor for Cancer Effects	chemical specific	dimensionless	Pathway specific
EF - Exposure Frequency	1	event/day	
EDiag.dom - Exposure Duration for ingestion or dermal exposure	1	day/event	
ED _{inh} - Exposure Duration for inhalation exposure	0.046	day/event	Calculated: Total time in shower room for a 1 - 8 year old
for age group 1-8	ŀ		(65.7 min) / day (1440 min).
ED _{inh} - Exposure Duration for inhalation exposure	0.046	day/event	Calculated: Total time in shower room for a 8 - 15 year old
for age group 8-15		1	(66.4 min) / day (1440 min)
ED _{inh} - Exposure Duration for inhalation exposure	0.044	day/event	Calculated: Total time in shower room for a 15 - 31 year old
for age group 15-31	ļ.		(62.8 min) / day (1440 min)
EP(1-8) - Exposure Period for age group 1-8	7	years	
EP ₍₈₋₁₅₎ - Exposure Period for age group 8-15	7	years	
EP ₍₁₅₋₃₁₎ - Exposure Period for age group 15-31	16	years	
BW ₍₁₋₈₎ - Body Weight for age group 1-8	17	i .	ILIS EDA 1007 Eveneura England Handbook Table 7.7 formulas
BW ₍₈₋₁₅₎ - Body Weight for age group 8-15	39,9	kg	U.S. EPA. 1997. Exposure Factors Handbook. Table 7-7, females.
		kg	U.S. EPA. 1997. Exposure Factors Handbook. Table 7-7, females.
BW ₍₁₅₋₃₁₎ - Body Weight for age group 15-31	58.7	kg	U.S. EPA. 1997. Exposure Factors Handbook. Table 7-7, females.
AP(lifetime) - Averaging Period for lifetime	70	years	
AP(noncancer) - Averaging Period for noncancer	7	years	
IEC _S - Inhalation Exposure Concentration from showering	chemical specific	mg/m²	Age group specific. See Table GW-8.
DA - Dose Absorbed through skin in shower	chemical specific	mg/cm²	Age group specific. See Table GW-9.
OAE _c - Oral Absorption Efficiency for Cancer Effects	chemical specific		
SA ₍₁₋₈₎ - Surface Area for age group 1-8	7130	cm ²	50th percentile for females. Appendix Table B-2.
	I		MADEP. 1995. Guidance for Disposal Site Risk Characterization.
SA ₍₈₋₁₅₎ - Surface Area for age group 8-15	12800	cm²	50th percentile for females. Appendix Table B-2.
			MADEP. 1995. Guidance for Disposal Site Risk Characterization.
SA ₍₁₅₋₃₁₎ - Surface Area for age group 15-31	16731	cm ²	50th percentile for females. Appendix Table B-2.
	Ì	l	MADEP. 1995. Guidance for Disposal Site Risk Characterization.
D _s - Shower Duration for age group 1-8	45.7	min	U.S. EPA. 1997. Exposure Factors Handbook. Table 15-21.
	0.76	hour	95th percentile ages 1-8. Weighted average of 1-8 year age
1	Į.		groups: ((4x50)+(3x40))/7= 45.7 minutes
D _t - Total Time in Shower Room	65.7	min	U.S. EPA. 1997. Exposure Factors Handbook. Tables 15-21,22.
for age group 1-8	ļ		Equals the shower duration (Ds) plus the number of minutes
	:		spent in the shower room immediately after showering
Į.			(95th percentile): Ds + ((4*20)+(3*20))/7 = 65.7 minutes
D _s - Shower Duration	42.1	min	U.S. EPA. 1997. Exposure Factors Handbook. Table 15-21.
for age group 8-15	0.70	hr	95th percentile ages 8-15. Weighted average of 8-15 age
\	1	ĺ	groups: $((4x40)+(3x45)/7 = 42.1 \text{ minutes}$
D _t - Total Time in Shower Room	66.4	min	U.S. EPA. 1997. Exposure Factors Handbook. Tables 15-21,22.
for age group 8-15			Equals the shower duration (Ds) plus the number of minutes
	l		spent in the shower room immediately after showering
	_	ĺ	(95th percentile): Ds + ((4*20)+(3*30))/7=66.4 minutes
D _s - Shower Duration	32.8	min	U.S. EPA. 1997. Exposure Factors Handbook. Table 15-21.
for age group 15-31	0.55	hr	95th percentile ages 15-31. Weighted average of 15-31 year
5 T. IT. 101 T		İ	age groups: $((3x45)+(13x30)/16 = 32.8 \text{ minutes}.$
D _t - Total Time in Shower Room	62.8	min	U.S. EPA. 1997. Exposure Factors Handbook. Tables 15-21,22.
for age group 15-32		l	Equals the shower duration (Ds) plus the number of minutes
	1		spent in the shower room immediately after showering
DM - Dermi Multiplier] ,	(95th percentile): Ds + ((3*30)+(13*30))/16 = 62.8 minutes
DM - Dermal Multiplier	cnemical specific	dimensionless	If Kp < 0.5 cm/hr, then 0.2. Otherwise 1.

Drinking Water: Table DW-9 Chemical-Specific Data

Oil or	CSF	URF	RAF _{c-ing}	OAE,		RfC	RAFacing	OAE _{sc}	DM		log K _{ew}	Permeability Coefficient Kp	Henry's Law Constant HLC atm-m³/mol
Hazardous Material	(mg/kg-day) ⁻¹	(μ g /m ³) ⁻¹			mg/kg-day	mg/m³		ا ا		g/mole		cm/hr	
Benzene	5.5E-02	7.8E-06	1	1	4.0E-03	3.0E-02	1	1		78	2.13	1.55E-02	5.55E-03
Benzo(a)pyrene	7,3E+00	2.1E-03	1	0.92	3,0E-02	5.0E-02	0.91	0.92	1	252	6.1	7.51E-01	1.13E-06
Dichloroethylene, 1,1-					5.0E-02	2.0E-01	1	1					
Ethylbenzene					1.0E-01	1.0E+00	1	1					•
Fluoranthene					4.0E-02	5.0E-02	1	0.92	0.2				•
Hmx					5.0E-02	1.8E-01	1	0.3					
Indeno(1,2,3-cd)pyrene	7.3E-01	2.1E-04	1	0.92	3.0E-02	5.0E-02	0.91	0.92	1	276	6.58	1.16E+00	1.60E-06
Naphthalene					2.0E-02	3.0E-03	1	0.92					
C11 to C22					3.0E-02	5.0E-02	0.91	0.92					
Rdx	1.1E-01	3.1E-05	1	1	3.0E-03	1.1E-02	1	1		222.26	0.87	3.45E-04	1.20E-05
Toluene					2.0E-01	4.0E-01	1	1					
Trichloroethane, 1,1,2-	5.7E-02	1.6E-05	1	1	4.0E-03	7.4E-02	1	1		133	2.05	6.74E-03	9.13E-04
Trichloroethylene	1.1E-02	1.7E-06	1	1	2.0E-03	1.8E-01	1	1		131	2.42	1.22E-02	1.03E-02
Vinyl chloride	1.4E+00	8.8E-06	1.53	0.64	3.0E-03	1.0E-01	1	0.98		63	1.36	5.73E-03	2.70E-02
Xylenes (mixed isomers)					2.0E-01	6.0E-02	1	1					

Method 3 Risk Assessment for Resident Exposed to Chemicals in Soil - Shortform 2005 (sf05rs)

Index This spreadsheet.

EPCs Tabel RS-1: Select chemcials and enter Exposure Point Concentrations (EPCs) in this spreadsheet.

Associated risks are presented to the right of the EPC. Table RS-2: Equations to calculate cancer risks.

NC Eq Table RS-3: Equations to calculate noncancer risks.

Exp Table RS-4: Definitions and exposure factors.

Produce Table RS-5: Equations to calculate produce ingestion rate

Chem Table RS-6: Chemical-specific data.

Questions and Comments may be addressed to:

Andrew Friedmann, Ph.D.

C Eq

Massachusetts Department of Environmental Protection

Office of Research and Standards One Winter Street - 7002 Boston, MA 02108 USA Telephone: (617) 292-5841 Fax: (617) 556-1006

Email: andrew.friedmann@state.ma.us

Resident - Soil: Table RS-2

Equations to Calculate Cancer Risk for Resident (Age 1-31 years)

Cancer Risk from Ingestion

$$LADD_{ing(1-31)} = LADD_{ing(1-8)} + LADD_{ing(8-15)} + LADD_{ing(15-31)}$$

$$LADD_{ing (agz group x)} = \frac{[OHM]_{agl1} * IR_x * RAF_{c-ing} * EF_{ing} * ED * EP_x * C}{BW_x * AP_{kifetime}}$$

Cancer Risk from Dermal Absorption

$$LADD_{derm(1-31)} = LADD_{derm(1-8)} + LADD_{derm(8-15)} + LADD_{derm(15-31)}$$

Cancer Risk from Homegrown Produce

Parameter	Value	Units
CSF	OHM specific	(mg/kg-day) ⁻¹
LADD	age/OHM specific	mg/kg-day
[OHM] _{soil}	OHM specific	mg/kg
IR ₍₁₋₄₎	100	mg/day
IR ₍₈₋₁₅₎	50	mg/day
IR ₍₁₅₋₃₁₎	50	mg/day
PIR(1-8)	12,099	mg/day
PIR ₍₈₋₁₅₎	17,809	mg/day
PIR ₍₁₅₋₃₁₎	24,420	mg/day
RAF _{c-ing}	OHM specific	dimensionless
RAF _{c-derm}	OHM specific	dimensionless
RAF _{c-produce}	OHM specific	dimensionless
EF _{inglesm}	0.41	event/day
EF _{produce}	1	event/day
ED	1	day/event
EP(1-8)	7	years
EP ₍₈₋₁₅₎	7	years
EP(13-31)	16	years
С	0.000001	kg/mg
BW ₍₁₋₈₎	17	kg
BW ₍₈₋₁₆₎	39.9	kg
BW ₍₁₆₋₃₁₎	58.7	kg
AP _(lifetime)	70	years
SA ₍₁₋₈₎	2431	cm²
SA ₍₈₋₁₅₎	4427	cm ²
SA ₍₁₅₋₃₁₎	5653	cm²
SAF ₍₁₋₁₎	0.35	mg/cm ²
SAF ₍₈₋₁₅₎	0.14	mg/cm ²
SAF ₍₁₅₋₃₁₎	0.13	mg/cm ²
PUF	OHM specific	dimensionless

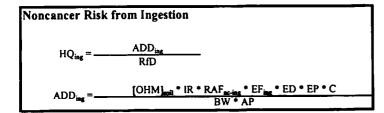
Vlookup Version v0705

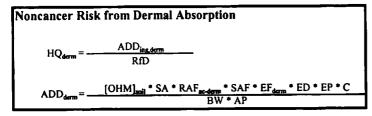
Resident - Soil: Table RS-1

Exposure Point Concentration (EPC)

Based on Resident Ages 1-31 (Cancer) and 1-6 (Noncancer)

Do not insert or delete any rows


ELCR (ali chemicals) = HI (ali chemicals) = 2.E-05


Click on empty cell below and select OHM using arrow.

Oil or	EPC						Chronic		
Hazardous Material	(mg/kg)	ELCR ingestion	ELCR _{dermal}	ELCR _{vegetable}	ELCR _{total}	HQ _{lag}	HQ _{derm}	HQ _{vegstable}	HQ _{total}
Acenaphthylene	1.0E+00					2.9E-05	6.8E-05		9.7E-05
Benzo(a)anthracene	2.0E+00	1.5E-07	1.1E-07		2.7E-07	4.5E-05	2.7E-05		7.2E-05
Benzo(a)pyrene	1.3E+01	9.9E-06	7.3E-06		1.7E-05	2.9E-04	1.8E-04		4.7E-04
Chromium(VI)	5.0E+00					4.0E-03	3.1E-03	1.1E-01	1.2E-01
Chrysene	2.0E+00	1.5E-08	1.1E-08		2.7E-08	4.5E-05	2.7E-05		7.2E-05
Fluoranthene	2.0E+00				-	4.3E-05	1.0E-04		1.5E-04
Indeno(1,2,3-cd)pyrene	3.0E+00	2.3E-07	1.7E-07		4.0E-07	6.8E-05	4.1E-05		1.1E-04
Lead	6.5E+01					1.0E-01	1.1E-02	4.6E+00	4.7E+00
Nickel	2.0E+00					2.4E-04	7.2E-04	2.7E-02	2.8E-02
Rdx	2.0E+00	8.2E-08	1.7E-07		2.5E-07	1.6E-03	2.7E-03		4.3E-03

Resident - Soil: Table RS-3

Equations to Calculate Noncancer Risk for Resident Child (Age 1-8 years)

Parameter	Value	Units
RfD	OHM specific	mg/kg-day
ADD	OHM specific	mg/kg-day
[OHM] _{soil}	OHM specific	mg/kg
IR	100	mg/day
PIR	12,099	mg/day
RAF _{ac-ing}	OHM specific	dimensionless
RAF _{ac-derm}	OHM specific	dimensionless
RAF _{ac-produce}	OHM specific	dimensionless
EFinedom	0.41	event/day
EF _{produce}	1	event/day
ED	1	day/event
EP	7	years
С	0.000001	kg/mg
вw	17	kg
AP	7	уеаг
SA	2431	cm²
SAF	0.35	mg/cm²
PUF	OHM specific	dimensionless

Resident - Soil: Table RS-4 Definitions and Exposure Factors

Parameter	Value	Units	Notes
ELCR - Excess Lifetime Cancer Risk	chemical specific	dimensionless	Pathway specific (ing =ingestion, dernr=dermal, inh=inhalation)
CSF - Cancer Slope Factor	chemical specific	(mg/kg-day)"	
URF - Unit Risk Factor	chemical specific	(m/8n)	
LADD - Lifetime Average Daily Dose	chemical specific	mg/kg-day	Pathway specific
LADE - Lifetime Average Daily Exposure	chemical specific	rig/m³	
HQ - Hazard Quotient	chemical specific	dimensionless	Pathway specific (ing =ingestion, derrrr-dermal, inh-inhalation)
RfD - Reference Dose	chemical specific	mg/kg-day	see Table RS-6
RfC - Reference Concentration	chemical specific	mg/m³	see Table RS-6
ADD - Average Daily Dose	chemical specific	mg/kg-day	Pathway specific
ADE - Average Daily Exposure	chemical specific	mg/m³	
EPC - Exposure Point Concentration	chemical specific	ng/L	
IR ₍₁₋₈₎ - Soil Ingestion Rate for age group 1-8	<u>8</u>	mg/day	MADEP. 2002. Technical Update: Calculation of an Enhanced Soil Ingestion Rate.
			(http://www.mass.gov/dep/ors/orspubs.htm)
IR(1-15) + Soil Ingestion Rate for age group 8-15	8	mg/day	Did
IR(15.31) - Soil Ingestion Rate for age group 15-31	8	mg/day	lbid
PIR ₍₁₋₄₎ = Produce Ingestion Rate for age group 1-8	12,099	mg/day	see Table RS-6
PIR _(a-15) = Produce Ingestion Rate for age group 8-15	17,809	mg/day	see Table RS-6
PIR(15.31) = Produce Ingestion Rate for age group 15-31	24,420	mg/day	sec Table RS-6
RAF Relative Absorption Factor for Cancer Effects	chemical specific	dimensionless	
EFinadorm - Exposure Frequency for ingestion or dermal exposure	0.41	event/day	
EF produce - Exposure Frequency for produce ingestion		event/day	
ED - Exposure Duration		day/event	
EP(1-8) - Exposure Period for age group 1-8	7	years	
EP ₍₈₋₁₅₎ - Exposure Period for age group 8-15	7	years	
EP(15-31) - Exposure Period for age group 15-31	91	years	
BW(1-4) - Body Weight for age group 1-8	17	k 8	U.S. EPA. 1997. Exposure Factors Handbook. Table 7-7, females.
BW(18.15) - Body Weight for age group 8-15	39.9	kg	U.S. EPA. 1997. Exposure Factors Handbook. Table 7-7, females.
BW ₁₀ - Body Weight for age group 15-31	58.7	ķ	U.S. EPA. 1997. Exposure Factors Handbook. Table 7-7, females.
AP(hikeime) - Averaging Period for lifetime	20	years	
AP (noncance) - Averaging Period for noncancer	7	years	
SA(1.8) - Surface Area for age group 1.8	2431	cm³	50th percentile of face (1/3 head), forcarms, hands, lower legs, and feet for females
			MADEP. 1995. Guidance for Disposal Site Risk Characterization. Appendix Table B-2.
SA ₍₈₋₁₅₎ - Surface Area for age group 8-15	4427	É	50th percentile of face (1/3 head), forearms, hands, lower legs, and feet for females
			MADEP. 1995. Guidance for Disposal Site Risk Characterization. Appendix Table B-2.
SA(15-311) - Surface Area for age group 15-31	5653	car;	Soth percentile of face (1/3 head), forearms, hands, lower legs, and feet for females
			MADEP, 1995. Guidance for Disposal Site Risk Characterization. Appendix Table B-2.
SAF(1.4). Surface Adherence Factor for age group 1-8	0.35		All SAFs developed for ShortForm according to procedure outlined in MA DEP Technical Update:
SAF ₍₈₋₁₅₎ - Surface Adherence Factor for age group 8-15	0.14		Weighted Skin-Soil Adherence Factors, April 2002
SAF(15.31) - Surface Adherence Factor for age group 15-31	0.13		

Resident - Soil: Table RS-6 Homegrown Produce Ingestion Rate

Data on mean produce ingestion rates (wet weight, ww) in the Northeast was obtained from the 1994-1996 Continuing Survey of Food Intakes by Individuals (USDA). Data for both genders were used for children under 6, while data for males was used for individuals 6 and older. The mean ingestion rates presented in the survey represent the arithmetic average of all individuals surveyed, regardless of whether or not they had consumed the produce item (e.g., an individual that did not consume the produce item was assigned a rate of 0 g/day). To determine the mean ingestion rate for individuals who ate each produce item, the ingestion rate for all individuals (consumers and nonconsumers) was divided by the percentage of individuals who ate the item (Table RS-6A). These mean ingestion rates for the produce consumers were summed to determine the total produce ingestion rate for each age-group and converted to dry weight assuming the produce items were all 90% water.

To convert mean ingestion rates for the age-groups studied in the survey to age-groups used in risk calculations, each age-group ingestion rate from the survey (i.e., 1 - 2 year olds, 3 - 5 year olds, 6 - 11 year olds, 12 - 19 year olds, and 20 - 39 year olds) was weighted according to the number of years spent in the risk calculation age group (i.e., 1 - 8 year olds, 8 - 15 year olds, and 15 - 31 year olds) (Table RS-6B). It was assumed that 25% of produce ingested was home-grown (Table RS-6C).

Table RS-6A

		White Potatoes			Dark-green vegetab	les		Deep-yellow vegeta	bles
Age-groups studied	Ingetion Rate for All	% of individuals that consum e d	Ingetion Rate for Consumers	Ingetion Rate for All	% of individuals that consumed	Ingetion Rate for Consumers	Ingetion Rate for All	% of individuals that consumed	Ingetion Rate for Consumers
in surv ey	g/d (ww)	item.	g/d (ww)	g/d (ww)	item.	g/d (ww)	g/d (ww)	item.	g/d (ww)
1-2	28	40.3	69.5	6	10.1	59.4	5	12.7	39.4
3-5	30	37.1	80.9	5	6.5	76.9	7	12.7	55.1
6-11	47	44.2	106.3	6	9.1	65.9	2	8.5	23.5
12-19	59	40.3	146.4	2	2.3	87.0	11	15.8	69.6
20-39	76	45.1	168.5	25	14.7	170.1	4	5.7	70.2

		Tomatoes			Lettuce			Green Beans	·
Age-groups studied	Ingetion Rate for All g/d (ww)	% of individuals that consumed item.	Ingetion Rate for Consumers g/d (ww)	Ingetion Rate for All g/d (ww)	% of individuals that consumed item.	Ingetion Rate for Consumers g/d (ww)	Ingetion Rate for All g/d (ww)	% of individuals that consumed item.	Ingetion Rate for Consumers g/d (ww)
1-2	10	27.9	35.8	1	6	16.7	7	12.1	57.9
3-5	10	37.1	27.0	4	14	28.6	3	5.7	52.6
6-11	20	42	47.6	8	14.9	53.7	1	2	50.0
12-19	29	45.2	64.2	19	28.7	66.2	2	2.4	83.3
20-39	48	50.9	94.3	18	29.6	60.8	4	3.7	108.1

Table RS-6A (continued)

Corn, Green peas, Lima beans					Melons, berries	Totals	Totals	
Age-groups studied	Ingetion Rate for All	% of individuals that consumed	Ingetion Rate for Consumers	Ingetion Rate for All	% of individuals that consumed	Ingetion Rate for Consumers	Wet Weight WWI	Dry Weight DWI
	g/d (ww)	item.	g/d (ww)	g/d (ww)	item.	g/d (ww)	g/day	g/day
1-2	12	15	80.0	/	9	77.8	436.4	43.6
3-5	14	21.7	64.5	14	11.6	120.7	506.3	50.6
6-11	9	13.6	66.2	5	5.9	84.7	498.0	49.8
12-19	14	9.9	141.4	17	5	340.0	998.1	99.8
20-39	12	7.3	164.4	6	4.5	133.3	969.7	97.0

Table RS-6B

Age-groups studied in survey	Years spent in age-group for 1-8 year old	Years spent in age-group for 8-15 year old	Years spent in age-group for 15-31 year old	
1-2	2			
3-5	3			
6-11	2	4		
12-19		3 ·	4	
20-39			12	
	7	7	16	

Table RS-6C

_	Produce Intake, dry weight					
	Child	Child	Adult			
	1-8 years	8-15 years	15-31			
	g/day	g/day	g/day			
All Produce:	48.4	71.2	9	7.7		
Homegrown:	12.1	17.8	2	24.4		

Resident - Soil: Table RS-6 Chemical-Specific Data

Oil or Hazardous Material	CSF (mg/kg-day) ⁻¹	RAF _{c-ing}	RAF _{t-derm}	RAF _{c-produce}	RfD mg/kg-day	RAF _{ac-lag}	RAF _{nc-derm}	RAF _{ac-produce}	PUF
Acenaphthylene					0.03	3.6E-01	1.0E-01		
Benzo(a)anthracene	7.3E-01	2.8E-01	2.0E-02		0.03	2.8E-01	2.0E-02		
Benzo(a)pyrene	7.3E+00	2.8E-01	2.0E-02		0.03	2.8E-01	2.0E-02		
Chromium(VI)					0.003	1.0E+00	9.0E-02	1	0.1
Chrysene	7.3E-02	2.8E-01	2.0E-02		0.03	2.8E-01	2.0E-02		
Fluoranthene					0.04	3.6E-01	1.0E-01		
Indeno(1,2,3-cd)pyrene	7.3E-01	2.8E-01	2.0E-02		0.03	2.8E-01	2.0E-02		
Lead					0.00075	5.0E-01	6.0E-03	0.5	0.15
Nickel					0.02	1.0E+00	3.5E-01	1	0.38
Rdx	1.1E-01	1.0E+00	2.0E-01		0.003	1.0E+00	2.0E-01		