PHASE I INITIAL SITE INVESTIGATION AND TIER CLASSIFICATION

Prepared for:

Eagle Gas, Inc. 131 Main Street, Carver, MA

DFP RTN 4-17582

Prepared by: Decoulos & Company

Date: April 30, 2004

DECOULOS & COMPANY

ENVIRONMENTAL ENGINEERING & LAND PLANNING

Friday, April 30, 2004

Jonathan E. Hobill, Regional Engineer Bureau of Waste Site Cleanup 20 Riverside Drive Lakeville, MA 02347

RE: 131 Main Street, Carver; RTN 4-17582

Dear Mr. Hobill:

On behalf of Eagle Gas, Inc., Decoulos & Company is pleased to submit this Phase I Initial Site Investigation Report and Tier Classification for the above referenced property.

Based upon our findings, the score from the Numerical Ranking System scoresheet is 742 and the site is therefore classified as Tier IA.

Eagle is requesting that RTN 4-17825 be linked to this release and the Tier Classification Transmittal Form has been checked accordingly.

The Department issued a Notice of Noncompliance related to this release on March 19, 2004 (NON-SE-03-3T-103). Eagle will soon be submitting an Immediate Response Action Status Report for this release to additionally comply with the NON.

We appreciate your patience and cooperation on this matter. Please feel free to call or email if you have any questions or concerns. Thank you.

Very truly yours,

James J. Decoulos, PE, LSP jamesj@decoulos.com

cc: Francis J. Casey, Carver Board of Selectmen

Robert C. Tinkham, Jr., Carver Board of Health

Sarah G. Hewins, Carver Conservation Commission

William A. Halunen, Carver Department of Public Works

Dana E. Harriman, Carver Fire Department

Donald P. Nagle, Esq.

Theodore J. Kaegael, Jr., Kaegael Environmental, Inc.

Theodore L. Bosen, Esq.

Najib Badaoui, Eage Gas, Inc.

TABLE OF CONTENTS

		page
1.0	COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT, BWSC-108	1
2.0	TIER CLASSIFICATION TRANSMITTAL FORM, BWSC 107	. 6
3.0	PURPOSE AND SCOPE	10
4.0	CURRENT AND FORMER SITE OWNERS. 4.1 Current Site Owner. 4.2 Former Site Owners.	10
5.0	SITE DESCRIPTION. 5.1 Current Use 5.2 Current Abutting Uses	11
6.0	SITE HYDROGEOLOGY	15
7.0	SENSITIVE RECEPTORS	15
8.0	REVIEW OF LOCAL, STATE AND FEDERAL RECORDS	
	 Public Water Supply at Carver Square Marketplace, DEP PWS ID#4052056	
9.0	MCP COMPLIANCE AND SUBSURFACE INVESTIGATIONS AT SITE. 9.1 GeoProbe Investigation. 9.2 Groundwater and Surface Water Sampling.	20
10.0	MIGRATION PATHWAYS AND EXPOSURE POTENTIALS	25
11.0	NUMERICAL RANKING SYSTEM SCORESHEET	25
12.0	SUMMARY AND CONCLUSIONS	26

LIST OF FIGURES

1	LOCUS MAP1
2	MASSGIS 21E RESOURCE MAP
3	EXISTING SITE PLAN. 14
1.19	ST OF TABLES
	of of indees
1	GROUNDWATER ELEVATION DATA
1 2	POSITIVE LAB RESULTS FOR SOIL SAMPLES
3	POSITIVE LAB RESULTS FOR SOIL SAMPLES
3	AND SURFACE WATER SAMPLES
4	POSITIVE LAB RESULTS FOR DRINKING WATER SUPPLY SAMPLES2
7	TOSTITUE LAD RESULTS FOR DIRIVINIO WATER SUITET SAMELES2
T T(OT OF ADDENDICES
	ST OF APPENDICES
A	LIMITATIONS
В	SITE PLAN – SHEET 1
C	UST RECORDS FROM CARVER FIRE DEPARTMENT
D	APPROVED SEPTIC PLAN FROM WEBBY ENGINEERING
E	ENVIRONMENTAL FIRSTSEARCH™ REPORT
F	ENVIRONMENTAL SITE ASSESSMENT OF 132 MAIN STREET
G	DOCUMENTATION OF CARVER SQUARE PUBLIC WATER SUPPLY
Н	IRA STATUS REPORT AND PHASE V – FORMER CARMICHAEL'S MOBIL
I	PAULDING COMPANY REPORTS
J	DISCONTINUANCE PLAN OF MAIN STREET
K	BORING LOGS
L	LABORATORY CERTIFICATES OF ANALYSIS
M	NUMERICAL RANKING SYSTEM SCORESHEET

BWSC108

Release Tracking Number

4

17582

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

A. SITE LOCATION:
1. Site Name: Eagle Gas, Inc.
2. Street Address: 131 Main Street
3. City/Town: Carver 4. ZIP Code: 02330-0000
5. Check here if a Tier Classification Submittal has been provided to DEP for this disposal site.
☑ a. TierIA
6. If applicable, provide the Permit Number:
B. THIS FORM IS BEING USED TO: (check all that apply)
1. Submit a Phase I Completion Statement, pursuant to 310 CMR 40.0484.
2. Submit a Revised Phase I Completion Statement, pursuant to 310 CMR 40.0484.
3. Submit a Phase II Scope of Work, pursuant to 310 CMR 40,0834.
4. Submit an interim Phase II Comprehensive Site Assessment Report pursuant to 310 CMR 40.0835 (An interim Phase II Report does not satisfy the response action deadline requirements in 310 CMR 40.0500).
5. Submit a final Phase II Comprehensive Site Report and Completion Statement, pursuant to 310 CMR 40.0836.
Specify the outcome of the Phase II Comprehensive Site Assessment: (check one)
 a. Comprehensive Remedial Actions are necessary at the site to achieve a Response Action Outcome. A Phase III study for the identification, evaluation, and selection of Comprehensive Remedial Action Alternatives, pursuant to 310 CMR 40.0850, is necessary.
b. The requirements of a Class A Response Action Outcome have been met, and a completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP.
c. The requirements of a Class B Response Action Outcome have been met and a completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP.
6. Submit a Revised Phase II Comprehensive Site Report and Completion Statement, pursuant to 310 CMR 40,0836.
7. Submit a Phase III Remedial Action Plan and Completion Statement, pursuant to 310 CMR 40.0862.
8. Submit a Revised Phase III Remedial Action Plan and Completion Statement, pursuant to 310 CMR 40.0862.
9. Submit a Phase IV Remedy Implementation Plan, pursuant to 310 CMR 40.0874.
10. Submit a Modified Phase IV Remedy Implementation Plan, pursuant to 310 CMR 40.0874.
11. Submit an As-Built Construction Report, pursuant to 310 CMR 40.0875.
(All sections of this transmittal form must be filled out unless otherwise noted above)

BWSC108

Release Tracking Number

4 -

17582

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

3. Ti	iis F	ORM IS BEING USED TO (cont.): (check all that apply)
	12.	Submit a Phase IV Final Inspection Report and Completion Statement, pursuant to 310 CMR 40.0878 and 40.0879.
	Spe	ecify the outcome of Phase IV activities: (check one)
		 a. Phase V Operation, Maintenance or Monitoring of the Comprehensive Remedial Action is necessary to achieve a Response Action Outcome.
		b. The requirements of a Class A Response Action Outcome have been met. No additional Operation, Maintenance or Monitoring is necessary to ensure the integrity of the Response Action Outcome. A completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP.
		c. The requirements of a Class C Response Action Outcome have been met. No additional Operation, Maintenance or Monitoring is necessary to ensure the integrity of the Response Action Outcome. A completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP.
		d. The requirements of a Class C Response Action Outcome have been met. Further Operation, Maintenance or Monitoring of the remedial action is necessary to ensure that conditions are maintained and that further progress is made toward a Permanent Solution. A completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP.
		Submit a Revised Phase IV Final Inspection Report and Completion Statement, pursuant to 310 CMR 40.0878 and 0879.
	14.	Submit a periodic Phase V Inspection & Monitoring Report, pursuant to 310 CMR 40.0892.
	15.	Submit a Remedy Operation Status, pursuant to 310 CMR 40.0893.
	16.	Submit a Termination of a Remedy Operation Status, pursuant to 310 CMR 40.0893(5).
	17.	Submit a final Phase V Inspection & Monitoring Report and Completion Statement, pursuant to 310 CMR 40.0894.
	Spe	ecify the outcome of Phase V activities: (check one)
		a. The requirements of a Class A Response Action Outcome have been met. No additional Operation, Maintenance or Monitoring is necessary to ensure the integrity of the Response Action Outcome. A completed Response Action Outcome Statement (BWSC104) will be submitted to DEP.
		b. The requirements of a Class C Response Action Outcome have been met. No additional Operation, Maintenance or Monitoring is necessary to ensure the integrity of the Response Action Outcome. A completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP.
		c. The requirements of a Class C Response Action Outcome have been met. Further Operation, Maintenance or Monitoring of the remedial action is necessary to ensure that conditions are maintained and/or that further progress is made toward a Permanent Solution. A completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP.
	18.	Submit a Revised Phase V Inspection & Monitoring Report and Completion Statement, pursuant to 310 CMR 40.0894.
	19.	Submit a Post-Response Action Outcome Inspection & Monitoring Report, pursuant to 310 CMR 40,0897.
		(All sections of this transmittal form must be filled out unless otherwise noted above)

BWSC108

COMPREHENSIVE RESPONSE ACTION TRANSMI	TTAL
FORM & PHASE I COMPLETION STATEMENT	

Release Tracking Number 17582

Page 3 of 5

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

C. LSP SIGNATURE AND STAMP:

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

- > if Section B indicates that a Phase I, Phase II, Phase III, Phase IV or Phase V Completion Statement is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40,0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B indicates that a Phase II Scope of Work or a Phase IV Remedy Implementation Plan is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- if Section B indicates that an As-Built Construction Report, Phase V Inspection and Monitoring Report, or a Remedy Operation Status is being submitted, the response action(s) that is (are) the subject of this submitted (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40,0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit

information which I know to be false, inaccur	ate or materially incomplete.
1. LSP#: <u>9360</u>	
2. First Name: James	3. Last Name: Decoulos
4. Telephone: (617) 489-7795	5. Ext.: 6. FAX: (877) 842-9629
7. Signature: MWW	, A&A 24.4
8. Date: 04/30/2004 (mm/dd/yyyy)	9. LSP Stamp: JAMES DECOULOS No. 9360
	SITE PROPERTY.

Revised: 12/09/2003

Massachusetts Department of Environmental Protection

Bureau of Waste Site Cleanup

BWSC108

Release Tracking Number

17582

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

D. PERSON UNDERTAKING RESPONSE ACTIONS: c. change in the person 1. Check all that apply: b. change of address a. change in contact name undertaking response actions 2. Name of Organization: Eagle Gas, Inc. 3. Contact First Name: Najib 131 Main Street 5. Street: _______ 8. State: MA 9. ZIP Code: 02330-0000 Carver 7. City/Town: 10. Telephone: (508) 866-9098 ___ 11. Ext.: _____ 12. FAX: _ E. RELATIONSHIP TO SITE OF PERSON UNDERTAKING RESPONSE ACTIONS: a. Owner

b. Operator c. Generator d. Transporter e. Other RP or PRP Specify: ____ 2. Fiduciary, Secured Lender or Municipality with Exempt Status (as defined by M.G.L. c. 21E, s. 2) 3. Agency or Public Utility on a Right of Way (as defined by M.G.L. c. 21E, s. 5(j)) 4. Any Other Person Undertaking Response Actions Specify Relationship: _ F. REQUIRED ATTACHMENT AND SUBMITTALS: 1. Check here if the Response Action(s) on which this opinion is based, if any, are (were) subject to any order(s), permit(s) |V| and/or approval(s) issued by DEP or EPA. If the box is checked, you MUST attach a statement identifying the applicable provisions thereof. 2. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the submittal of any Phase Reports to DEP. 3. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the availability of a Phase III Remedial Action Plan. 4. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the availability of a Phase IV Remedy Implementation Plan. 5. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of any field work involving the implementation of a Phase IV Remedial Action. 6. Check here if any non-updatable information provided on this form is incorrect, e.g. Site Name. Send corrections to the DEP Regional Office. 7. Check here to certify that the LSP Opinion containing the material facts, data, and other information is attached.

BWSC108

Release Tracking Number

17582

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL **FORM & PHASE I COMPLETION STATEMENT**

G. CERTIFICATION OF PERSON UNDERTAKING RESPONSE ACTIONS: 1. J. Najib Badaoui , attest under the pains and penalties of perjury (i) that I have personally examined and am familiar with the information contained in this submittal, including any and all documents accompanying this transmittal form, (ii) that, based on my inquiry of those individuals immediately responsible for obtaining the information, the material information contained in this submittal is, to the best of my knowledge and belief, true, accurate and complete, and (iii) that I am fully authorized to make this attestation on behalf of the entity legally responsible for this submittal. I/the person or entity on whose behalf this submittat is made am/is aware that there are significant penalties, including, but not limited to, possible fines and imprisonment, for willfully submitting false, inaccurate, or incomplete information. Signature 5. Date: 04/30/2004 4. For: Eagle Gas, Inc. (Name of person or entity recorded in Section D) (mm/dd/yyyy) 6. Check here if the address of the person providing certification is different from address recorded in Section D. 8. City/Town: ______ 9. State: _____ 10. ZIP Code: _____ 11. Telephone: ______ 12. Ext.: _____ 13. FAX: ______ YOU MUST LEGIBLY COMPLETE ALL RELEVANT SECTIONS OF THIS FORM OR DEP MAY RETURN THE DOCUMENT AS INCOMPLETE. IF YOU SUBMIT AN INCOMPLETE FORM, YOU MAY BE PENALIZED FOR MISSING A REQUIRED DEADLINE. Date Stamp (DEP USE ONLY:)

BWSC107

TIER CLASSIFICATION TRANSMITTAL FORM

Pursuant to 310 CMR 40.0500 (Subpart E)

Release Tracking Number

4	-	17582

A. DISPOSAL SITE LOCATION: 1. Disposal Site Name: Eagle Gas, Inc. 2. Street Address: 131 Main Street 4. ZIP Code: 02330-0000 3. City/Town: Carver B. THIS FORM IS BEING USED TO: (check all that apply) 1. Submit a new Tier Classification Submittal for a Tier I Site, including a Numerical Ranking Scoresheet (BWSC107A) (check one) A Tier I Permit Application must also be submitted. a. Tier iA b. Tier IB c. Tier IC 2. Submit a new Tier Classification Submittal for a Tier II Site, including the Numerical Ranking Scoresheet (BWSC107A) and the Tier II Compliance History (BWSC107B) Submit a Phase I Completion Statement as per 310 CMR 40.0480 If previously submitted, provide date ____ mm/dd/yyyy 4. Submit a Phase II Scope of Work as per 310 CMR 40.0834 If previously submitted, provide date ____ mm/dd/yyyy 5. Submit a Phase II Conceptual Scope of Work supporting a Tier Classification Submittal 6. Submit a Tier II Extension Submittal for Response Actions at a Tier II Site including the Tier II Compliance History (BWSC107B) 7. Submit a Tier II Transfer Submittal for a change in person(s) undertaking Response Actions at a Tier II Site including the Tier II Compliance History (BWSC107B) and the Tier II Transferor Certification (BWSC107C) Proposed effective date of transfer: _ mm/dd/yyyy Submit a Revised Tier Classification Submittal, including a Numerical Ranking Scoresheet (BWSC107A) A Major Permit Modification may also need to be submitted. If this revised submittal is re-classifying the site check the new classification. a. Tier IA b. Tier IB c. Tier IC d. Tier II 9. Submit a Notice that an additional Release Tracking Number(s) is (are) being linked to this Tier Classified Site (Primary RTN). Future response actions addressing the Release or Threat of Release notification condition associated with additional Release Tracking Numbers (RTNs) will be conducted as part of the Response Actions planned or ongoing at the Primary Site listed above. For a previously Tier Classified Primary Site, if there is a reasonable likelihood that the addition of the new secondary RTN(s) would change the classification of the site, a Revised Tier Classification Submittal must also be made. Provide Release Tracking Number(s): 17825 All future Response Actions must occur according to the deadlines applicable to the Primary RTN. Use only the Primary RTN when making future submittals for this site unless specifically relating to response actions started before the linking occurred.

BWSC107

Release Tracking Number

4

17582

TIER CLASSIFICATION TRANSMITTAL FORM

Pursuant to 310 CMR 40.0500 (Subpart E)

C. LSP SIGNATURE AND STAMP:

Lattest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief.

- > if Section B of this form indicates that a Tier I or Tier II Classification Submittal including the Numerical Ranking System Scoresheet is being submitted, this Tier Classification Submittal has been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000 and, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) complies(y) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B of this form indicates that a **Phase I Completion Statement** is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B of this form indicates that a **Phase II Scope of Work** is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(les) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B of this form indicates that a **Tier II Extension Submittal** or a **Tier II Transfer Submittal** is being submitted, the response action(s) that is (are) the subject of this submittal (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) complies(y) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1. LSP #: 9360	r materially incomplete.
2. First Name: James	3. Last Name: Decoulos
4. Telephone: (617) 489-7795	5. Ext.: 6. FAX: (877) 842-9629
7. Signature: Maluk	9. LSP Stamp: JAMES
8. Date: <u>04/30/2004</u> mm/dd/yyyy	9. LSP Stamp: DECOULOS No. 9360 STEPPORE

Revised: 05/20/2003

BWSC107

TIER CLASSIFICATION TRANSMITTAL FORM Pursuant to 310 CMR 40.0500 (Subpart E)

Release Tracking Number 17582

D. PERSON MAKING SUBMITTAL:	
1. Check all that apply: a. change in contact name b. change of address c. change in the person undertaking response action	าธ
2. Name of Organization: Eagle Gas, Inc.	
3. Contact First Name: Najib 4. Last Name: Badaoui	
5. Street: 131 Main Street 6. Title: President	
7. City/Town; Carver 8. State: MA 9. ZIP Code: 02330-0000	
10. Telephone: (508) 866-9098	
E. RELATIONSHIP OF PERSON MAKING SUBMITTAL TO DISPOSAL SITE:	_
✓ 1. RP or PRP a. Owner b. Operator c. Generator d. Transporter	
e. Other RP or PRP Specify:	_
2. Fiduciary, Secured Lender or Municipality with Exempt Status (as defined by M.G.L. c. 21E, s. 2)	
3. Agency or Public Utility on a Right of Way (as defined by M.G.L. c. 21E, s. 5(j))	
4. Any Other Person Making Submittal Specify Relationship:	
F. REQUIRED ATTACHMENT AND SUBMITTALS:	
 Check here if the Response Action(s) on which this opinion is based, if any, are (were) subject to any order(s), permit(s and/or approval(s) issued by DEP or EPA. If the box is checked, you MUST attach a statement identifying the applicable provisions thereof. 	}
2. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the submittal of any Phase Reports to DEP.	
3. Check here to certify that a Legal Notice of a Tier Classification or Re-classification Submittal has been or will be made according to 310 CMR 40.1403, and a copy of the notice sent to DEP, the Chief Municipal Officer and the Local Board of Health.	
For a Tier II Extension Submittal, check here to certify that a statement summarizing why a Permanent or Temporary Solution has not been achieved at the Disposal Site is attached.	
5. For a Tier II Transfer Submittal, check here to certify that a statement summarizing the reasons for the proposed change in person(s) undertaking the Response Actions is attached. All Response Actions must be completed by the deadline applicable to the person who first filed either a Tier Classification Submittal for the Disposal Site or received a Waiver of Approvals.	
6. Check here if any non-updatable information provided on this form is incorrect, e.g. Release Address/Location Aid. Sen corrections to the DEP Regional Office.	đ
7. Check here to certify that the LSP Opinion containing the material facts, data, and other information is attached.	

BWSC107

TIER CLASSIFICATION TRANSMITTAL FORM

Release Tracking Number

Pursuant to 310 CMR 40.0500 (Subpart E)

4 - 17582

1. I, Najib Badaoui examined and am familiar with the information co transmittal form, (ii) that, based on my inquiry of th material information contained in this submittal is, that I am fully authorized to make this attestation o on whose behalf this submittal is made am/is awa fines and imprisonment, for willfully submitting fal	, attest under the pains ar ntained in this submittal, inclu- nose individuals immediately r , to the best of my knowledge a on behalf of the entity legally re- are that there are significant po	ding any and a esponsible for and belief, true sponsible for t enatties, includ	obtaining the information, the e, accurate and complete, and (iii) his submittal. I/the person or entity
If submitting a Tier II Classification, Extension or T person(s) or entity(ies) on whose behalf this subm requirements of M.G.L. c. 21E and 310 CMR 40.00 employed or engaged to render Professional Serv person(s) or entity(ies) on whose behalf this submestimated costs of necessary response actions, the ability to proceed with response actions for such si requirements; and (iii) that I am fully authorized to for this submittal. I/the person(s) or entity(ies) on 40.0172 for notifying the Department in the event that it/they is/are unable to proceed with the neces	ransfer, I also attest under the nittal is made has/have persor 000; (ii) based upon my inquiry vices for the disposal site which nittal is made, and my/that personat/those person(s) or entity(ie ite in accordance with M.G.L. of make this attestation on behalf whose behalf this submittal is that I/the person(s) or entity(ies).	pains and per nally examined of the/those L h is the subject son's(s') or ent s) has/have th c. 21E, 310 CM f of the persor made is awar	If and am/is familiar with the dicensed Site Professional(s) at of this Transmittal Form and of the tity's (ies') understanding as to the die technical, financial and legal MR 40.0000 and other applicable of the requirements in 310 CMR
2. By:		3. Title:	President
Signature			
4. For: Eagle Gas, Inc.		_ 5. Date:	04/30/2004
(Name of person or entity red	corded in Section D)		mm/dd/yyyy
6. Check here if the address of the person pro	oviding certification is different	from address	recorded in Section D.
7. Street:			
8. City/Town:	9. State:	1	0. ZIP Code:
11. Telephone:	12. Ext.: 13. F	AX:	· · · · · · · · · · · · · · · · · · ·
YOU ARE SUBJECT TO AN ANI BILLABLE YEAR FOR THIS DISP SECTIONS OF THIS FORM OR I SUBMIT AN INCOMPLETE FORM,	POSAL SITE. YOU MUST LEGIE DEP MAY RETURN THE DOCUM	BLY COMPLET. MENT AS INCO	E ALL RELEVANT MPLETE. IF YOU
Date St	tamp (DEP USE ONLY):		

3.0 PURPOSE AND SCOPE

This Phase I Initial Site Investigation Report and Tier Classification has been completed to address a release of hazardous materials reported to the Massachusetts Department of Environmental Protection (DEP - also referred to as the Department) Bureau of Waste Site Cleanup (BWSC) for property located at 131 Main Street in Carver, Massachusetts (the Site). The release of hazardous materials poses a potential liability under the Massachusetts Oil and Hazardous Material Release Prevention and Response Act, General Laws, Chapter 21E. The report follows the requirements of 310 CMR 40.0480 of the Massachusetts Contingency Plan (MCP). The MCP is the body of regulations promulgated under G.L. c.21E.

The activities undertaken during the course of the investigation included researching Site history, past and present usage of oil or hazardous materials, disposal methods, geological and hydrological conditions and environmentally sensitive areas on the Site and surrounding properties. Additionally, a subsurface boring investigation was conducted to delineate the extent of hazardous materials that may have impacted soils and groundwater. The findings within the report are based upon current and historical maps for the area, local and State files or documents, federal Superfund lists, interviews with local officials, other parties with knowledge of the Site and the subsurface investigation.

4.0 CURRENT AND FORMER SITE OWNERS

4.1 Current Site Owner

The current property owner is Najib Badaoui, Trustee, Marina Realty Trust. Mr. Badaoui's deed was recorded at the Plymouth Registry of Deeds (PRD) on June 5, 2003 in Book 25358, Page 112.

4.2 Former Site Owners

The former Site ownership is as follows:

October 31, 1997 to June 5, 2003 Najib Badaoui, PRD 15615, Page 160.

1980 to October 31, 1997

Richard S. Nantais, Trustee, Nantais Realty Trust, PRD 7516/307

Prior to 1980

Virginia K. Holmes

5.0 SITE DESCRIPTION

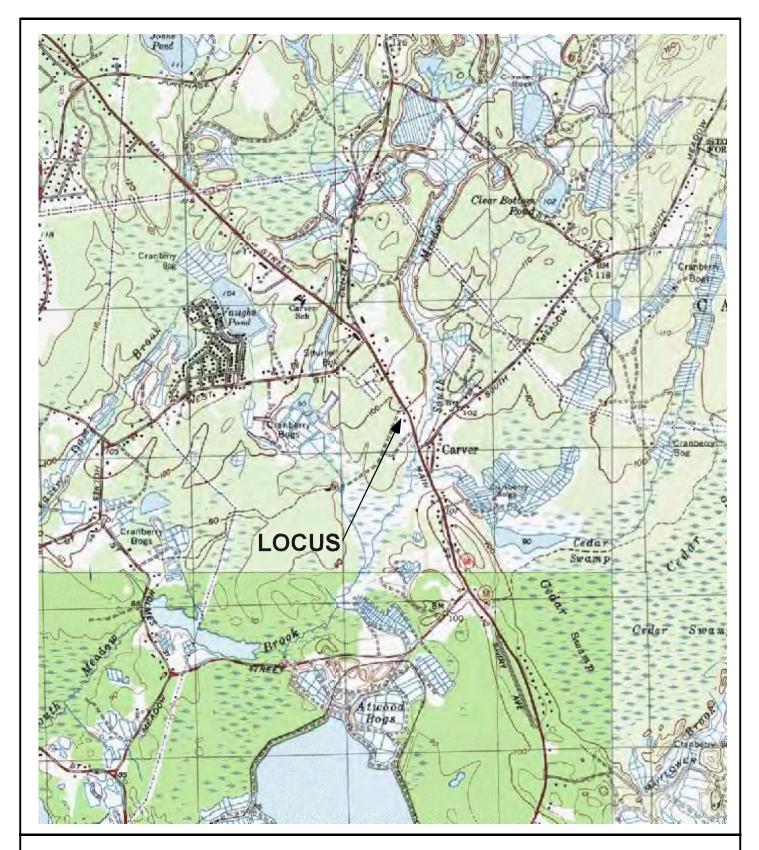
The property is identified as the Eagle Gas Station at 131 Main Street in Carver, Massachusetts (see locus on Figures 1 through 3). The Site is identified by the Carver Assessors as on Map 74, Parcel 17 and contains an area of approximately 0.85 acres.

According to the U.S. Geological Survey (USGS) map of Plympton, Massachusetts dated 1990, the Site is located approximately 99 feet above the National Geodetic Vertical Datum of 1929 with horizontal coordinates within the Universal Transverse Mercator (UTM) system at coordinates 4638458 mN, and 353451 mE. Latitude is 41°53'04" and longitude is 70°45'59".

Approximately 264.55 feet of frontage lies along Main Street. Main Street is a public right of way owned by the Town of Carver. Main Street is also known as Route 58, as it was once under the control of the Massachusetts Highway Department. Entrance onto the Site can be gained along most of the frontage on Main Street.

5.1 Current Use

Eagle Gas, Inc., the current operator of the gas station on Site, operates and maintains four steel, double-walled, underground storage tanks (USTs) on Site. Three of the USTs have a capacity of 5,000 gallons, store gasoline and are located underneath the southerly section of the concrete pad as shown on Sheet 1 (see Appendix B). The fourth UST, with a capacity of 4,000 gallons, stores diesel fuel and is located under the northerly section of the concrete pad. Carver Fire Departmet records on the USTs are located in Appendix C.


The retail gas station distributes fuel for automobiles and trucks. UST tightness tests have been periodically conducted on Site and the latest round of testing was provided in Appendix B of the IRA Plan dated March 17, 2003.

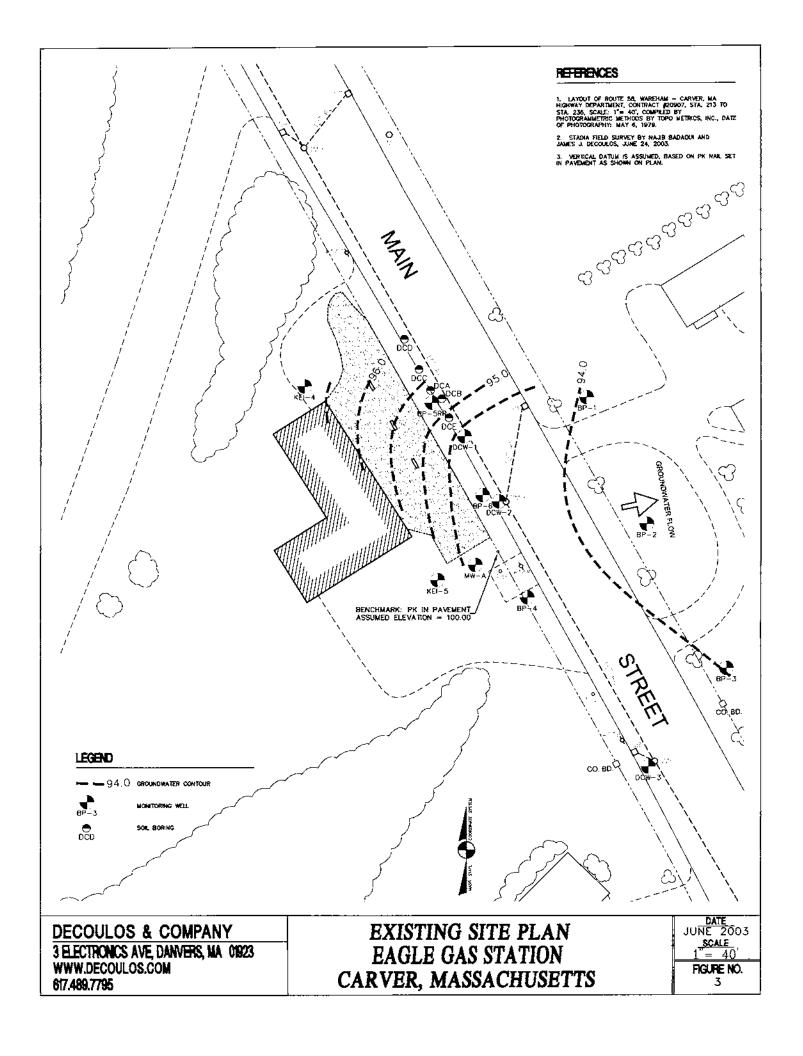
Eagle formerly operated a general automotive repair business on Site. One automotive bay is located in the southern portion of the building. No floor drains exist within the bay area.

An unoccupied apartment exists on the second floor of the building on Site. According to a septic system design plan by Webby Engineering Associates, Inc. of Plympton, MA dated June 27, 1998, the apartment contains two bedrooms (see Appendix D). A private drinking water supply well is located beneath the station building in the southwestern corner of the building. The well is not currently being used for drinking water purposes. No data on depth or screened interval was immediately available.

5.2 Current Abutting Uses

A private residence owned by Paul Malley is located south of the Site at 133 Main Street and an access road to a rod and gun club abuts the triangular shaped Site to the west. The Malley residence is serviced by a private drinking water supply well in the western portion of the property as shown on Sheet 1 and a subsurface sewage disposal system is located on the eastern end of the property. An irrigation well is located in close proximity to the septic system and is currently not being used.

REFERENCE:


USGS QUADRANGLES PLYMPTON, MA 1990 PLYMOUTH, MA 1974 SNIPATUIT POND, MA 1990 WAREHAM, MA 0972 SCALE: 1:25,000

LOCUS MAP FIGURE 1

Site Scoring Map: 500 feet & 0.5 Mile Radii SITE NAME: Eagle Gas 131 Main Street is the best available at the date CARVER, MA 02330 of printing. Please refer to the 4638458n 353451ew Site Location CLEAR BOTTOM POÑO \oplus WEST STREET *RVER ADJUSTED RADII الماديانيان Roads: Limited Access, Divided, Major Road, Connector, Street, Treck, ≆ail EPA Sole Source Aquifer; FEMA 100-year floodplain Public Water Supplies: Ground, Surface, Non Community Boundaries: Town, County, DEP Region; Tran; Powerline; Pipeline; Aqueduct Approved Zone2; (WPA; Surface Water Supply Zone A Hydrography: Water Features, Public Surface Water Supply sins: Major, Sub; Streams: Perennial, Intermittent, Man Made Shore, Dams Potentially Productive Aquifers: Medium High Yield Non-Potential Drinking Water Source Area: Medium, High Yield DEP Permitted Solid Waste Facilities; Certified Vernal Pools May 18, 2004 SCALE 1:15000 KILOMETERS¹

WIA DEF - DUITEAU OF WASLE SILE CIEATIUP

6.0 SITE HYDROGEOLOGY

Surficial soils in the Site area are characterized by glacial and glacio-fluvial deposits. The unconsolidated sediments are typically stratified with a mixture of well graded sand, silt and clay. These deposits overlay granitic to granodioritic and gneissic to schistose rock. It has been reported that the bedrock materials date to the lower paleozoic to precambrian eras. Subsurface investigations at the Carver Square Marketplace report an approximate depth to bedrock of 42 feet below grade. The property is located approximately 500 feet due north of the Site.

Due to the well sorted surficial deposits, groundwater levels fluctuate greatly throughout the year. Groundwater would be expected to flow to the east or southeast at the Site, towards South Meadow Brook.

Groundwater in the area is productive as a drinking water source and the Site area is classified as a GW-1 category as defined in 310 CMR 40.0930 of the MCP.

7.0 SENSITIVE RECEPTORS

In addition to the productive use of the aquifer for drinking water purposes, the indoor air quality of the Site building and surrounding residences are considered potentially sensitive receptors. The source of this potential threat would be volatile organic compounds (VOCs) partitioning from the shallow groundwater and volatizing into indoor air spaces.

The last major sensitive receptor would be wetland resources and surface waters. These receptors play a critical role in the overall health of the ecosystem and are particularly vital to the local economy. The Carver area supports thousands of acres of cranberry bogs which are reliant on clean surface water resources.

There are no reported rare or threatened species habitats within 500 feet of the Site.

8.0 REVIEW OF LOCAL, STATE AND FEDERAL RECORDS

A review of state and federal records provided by FirstSearch Technology Corporation is included in Appendix E. The report provides available hazardous material storage and release information within one half mile to the Site.

In May of 2004, a review of sites in the surrounding Site area was conducted at DEP's southeast regional office. The sites targeted for review were in immediate or close proximity to the Site. Noteworthy reviews follow.

8.1 Private drinking well contamination at 132 Main Street, RTN 4-12848

On April 7, 1997, Norfolk Environmental of Stoughton, MA submitted an Environmental Site Assessment for property located at 132 Main Street (see Appendix F). The property is directly across Main Street from the Site and is referenced by the Carver Assessors as on Map 104, Parcel 1. The property is owned by William Holmes, a former owner and operator of the Site.

Based upon a determination by Norfolk that the drinking water well was determined to contain elevated levels of benzene, the release was reported to DEP and assigned RTN 4-12848. Responsible parties associated with the release are Mr. Holmes and the Nantais Realty Trust.

8.2 Public Water Supply at Carver Square Marketplace, DEP PWS ID#4052056

Carver Square Marketplace, located due north of the Site approximately 500 feet, is a mixed use commercial property that supports restaurants, professional offices, a church, post office, gas station, convenience store and hair salon. The property is served by a six inch diameter groundwater supply drinking well that is approximately 83 feet deep. The DEP Division of Water Supply has permitted the water source for the withdrawal of up to 30,000 gallons of water per day. An Interim Wellhead Protection Area (IWPA) has been established with a radius of 1066 feet. The IWPA intersects the Site. See Sheet 1 in Appendix B.

Recent information on the water source is provided in Appendix G.

8.3 Former Carmichael's Mobil at 118 Main Street, RTN 4-0612

A historical release of gasoline was observed at 118 Main Street, located approximately 500 feet north of the Site. The property has been used as a gasoline fueling station since 1929.

During the installation of new USTs in 1987, a release of gasoline to the soil was reported to the Department. A second release, ultimately linked with the first, was reported in March of 1995.

A soil vapor extraction system was installed in 1997 at the property. As of April 9, 2004, the system has removed approximately 4,200 lbs of hydrocarbons from the subsurface. Operation of the system continues as a comprehensive response action.

An Immediate Response Action Status Report and Phase V – Operation, Maintenance and Monitoring Report dated September 26, 2002 as prepared by Norfolk Ram Group of Plymouth, MA is provided in Appendix H. Additionally, an Immediate Response Action Completion Report and Imminent Hazard Evaluation dated April 9, 2004, prepared by Norfolk Ram, is also included in Appendix H.

9.0 MCP COMPLIANCE AND SUBSURFACE INVESTIGATIONS AT SITE

On September 8, 1997, a release of petroleum was reported on Site to DEP. The release, reported by Bartlett W. Paulding, Jr., LSP, identified total petroleum hydrocarbons (TPHs), benzene and methyl tert-butyl ether (MTBE) in a monitoring well located south of the gasoline UST concrete pad. The petroleum constituents exceeded reportable concentrations for groundwater identified in the MCP at 310 CMR 40.0000. Mr. Paulding provided a response to the release on September 13, 1997 and a copy of his report is provided in Appendix I.

The installation of the monitoring well and groundwater sampling was triggered by actions at 132 Main Street and the subsequent notification assigned RTN 4-12848.

The Paulding Company, Inc. (PCI) subsequently filed an Immediate Response Action (IRA) Plan for the Site on September 16, 1997. The IRA Plan provided a history of UST storage on Site and a summary of groundwater sampling from residential drinking water supply wells located downgradient of the Site. Eight groundwater microwells were installed on the Site and surrounding area as proposed in the IRA Plan. The borings for the wells identified elevated petroleum constituents in the soil that exceeded the S-3/GW-1 Method 1 cleanup standard in the MCP.

Groundwater sampling subsequently conducted by PCI revealed elevated levels of volatile petroleum hydrocarbon (VPH) fractions. The VPH analysis did not provide suitable accuracy for the determination of GW-1 Method 1 exceedances in the MCP as the method detection limits (MDLs) for analysis were not low enough.

Without submitting a Phase I Initial Site Investigation, PCI filed with DEP a Phase II Comprehensive Site Assessment, a Phase III Comprehensive Remedial Action Plan and a Class C Response Action Outcome (RAO) report on February 4, 1998.

On April 25, 1998, PCI submitted a report to the former owner of the Site, Richard S. Nantais, Trustee of Nantais Realty Trust (Nantais RT) describing the circumstances of the abandonment of two 1,000 gallon USTs beneath the building on Site (see Appendix I). The USTs are shown on Sheet 1.

DEP subsequently audited the RAO and on December 8, 1998, issued a Notice of Noncompliance (NON) to Nantais RT. The NON identified a number of MCP violations with the RAO and report submissions. Shortly thereafter, Mr. Paulding withdrew as the LSP of record for the Site.

On March 18, 1999, Kaegael Environmental, Inc. (KEI) filed a Phase I Initial Site Investigation Report and Tier Classification for the Site. DEP reviewed the submittal and on April 26, 1999 notified Nantais RT that the Phase I report was incomplete and that section of the Numerical Ranking Scoresheet (NRS) needed to be modified. On July 21, 1999, KEI responded to DEP's April 26th notification and addressed all the issues that DEP had raised.

On November 27, 2001, KEI oversaw the advancement of the one-inch microwell BP-5RR on Site. The well was installed to address the loss of monitoring well BP-5 on Site from a concrete pad reconstruction. Also on that day, borings BP-4R and BP-5R were advanced.

KEI subsequently sampled groundwater monitoring wells on Site on December 17, 2002. Due to elevated petroleum readings at BP-5RR, KEI conducted a non-aqueous phase liquid (NAPL) measurement at the well on January 15, 2003. Approximately 10 inches of NAPL was observed. As a result of this finding, KEI contacted Eagle Gas and informed them that a reportable condition under the MCP existed. On January 21, 2003, Eagle notified DEP of the NAPL finding.

During the middle of May, 2003, a discovery was made by Eagle that the diesel supply fuel line, which runs from the southerly portion of the concrete pad to the northerly location (where the diesel UST resides), was not secure (see location of line on Sheet 1). It appeared that the unsecured line was releasing a small amount of diesel product to the ground - every time a diesel fuel delivery was made to fill the 5,000 gallon UST. Upon obtaining knowledge of this condition, all deliveries to the diesel UST were ceased.

The purpose of the remote diesel fill line was to restrict tanker deliveries to the southerly portion of the Site. Eagle Gas had designed the delivery line in this location to provide extra safety for its customers as they entered and exited the Site during a diesel fuel delivery.

At the end of May, 2003 the remote diesel delivery line was taken out of service. All diesel deliveries are now made directly over the fill manhole on top of the UST.

During a site inspection on May 16, 2003, James J. Decoulos inspected potential surrounding receptors to the NAPL impacted well BP-5RR. Due to the close proximity of the well to the stormwater drainage system on Main Street, an immediate concern of the NAPL discovery was that the product may travel underground along the exterior of the stormwater drainage piping. This potential preferential pathway outside the stormwater drainage pipes could pose an Imminent Hazard (IH) as described in 310 CMR 40.0950 of the MCP.

IH Evaluations are required to be performed as part of an Immediate Response Action. <u>See</u> 310 CMR 40.0426. Due to the GW-1 classification of the general area and the sensitive agricultural use of wetland resources in the Carver area, the IH Evaluation included an inspection of South Meadow Brook.

The South Meadow Brook inspection on May 16, 2003 revealed the presence of a sheen on the surface of the brook. The sheen was observed from Main Street on both the easterly (upgradient) and westerly (downgradient) portions of the brook.

Upon observation of the sheen and the apparent lack of connection with Eagle Gas, Decoulos reported the condition to the Carver Board of Health and the Carver Conservation Commission at Town Hall. Further inquiry resulted in a telephone call to the Carver Fire Department.

Chief Dana E. Harriman and Deputy Chief Craig F. Weston met Decoulos on Pond Street at the intersection with South Meadow Brook. This point was approximately 1.5 miles upgradient of the brook from the observed sheen location.

With the assistance of Chief Harriman and Deputy Chief Weston, the source of the sheen was identified as a stormwater outfall located approximately 300 feet north of the intersection of Main Street and South Meadow Street (see Impacted Outfall Area on Sheet 1). Water emanating from the outfall appeared to be impacted from diesel fuel, home heating oil or waste oil.

DEP was contacted and Mark Jablonski from the Department responded to the scene at approximately 2:30 PM on May 16th. With the support of the Carver Department of Public Works, drainage structures in Main Street were removed and the headspace within each drainage structure was field screened for VOCs. The results of the headspace screening are presented on Sheet 1.

Although the drainage structures in front of the Site did not show any signs of petroleum impact, DEP issued a Notice of Responsibility (NOR) on May 16th to Eagle due to the likelihood that the source of the outfall contamination originated from the Site.

Absorbent booms were placed by the Department at the outfall and the surrounding surface water pool. Within two days, additional absorbent pads and booms were placed in the impacted outfall area (see Sheet 1). Pads and booms have been continuously monitored and replaced by Eagle since the discovery.

Recent title investigations of the land at the outfall reveals that the area is on property identified by the Carver Assessors as on Map 75, Parcel 3. The property is owned by Stephen J. Davis.

The Town of Carver maintains a right to inspect and repair utilities within the outfall area. As shown on Sheet 1, the area of the drainage line off Main Street lies within the 1903 layout of Main Street established by the Plymouth County Commissioners. The discontinuance of the 1903 layout was set forth in Decree No. 1124 from the County and is described fully at the PRD in Book 3040, Page 255. On Page 267 of the Decree it is stated:

All of that part of the old highway lying outside the above-described lines shall be discontinued as a public highway, unless otherwise noted on the plan mentioned below, when the new roadway has been constructed within the limits of the above-described lines to the satisfaction of the County Commissioners.

The Town of Carver shall have the right to enlarge and maintain drains, water mains, hydrants or any other utilities or grant permits to any public utility company to maintain their utilities in any part of Route 58 which has been discontinued as a public way in the above decree.

A reduced copy of the plan showing Section 3 of the discontinuance of old Main Street is provided in Appendix J.

9.1 GeoProbe Investigation

On June 2, 2003, a GeoProbe boring investigation was conducted on Site and within the Main Street right-of-way. The borings were advanced with a track mounted GeoProbe BK66DT operated by Michael Legere of Technical Drilling Services, Inc. of Sterling, MA (TDS). A police detail was provided as a result of the work being conducted within the Main Street layout.

Soil borings were advanced around the NAPL impacted well BP-5RR. Seven continuous soil samples were obtained to a depth of ten feet. The soil boring locations, DCA through DCE, are shown in Figure 3. Borings DCF, DCG and DCH were completed as monitoring wells DCW-1, DCW-2 and DCW-3, respectively, and they are also shown in Figure 3. The boring logs, with the headspace from screened soil samples measured with a ThermoElectron 580B photo-ionization detector (PID), are provided in Appendix K.

General subsurface conditions observed during the investigation revealed fine to medium sand between depths of one to four feet; and, silt and clay between depths of four to ten feet.

A stadia field survey was completed on June 24, 2003 to establish the recent boring and monitoring well locations and elevations. The groundwater elevation data established from the survey is as follows:

Groundwater Elevation Data Table 1

	Well Casing Elevation	Total Well Depth	Groundwater Depth 6/12/03	Groundwater Elevation 6/12/03	
MW-A	100.20	14.30	5.82	94.38	
BP-1	99.92	13.45	5.95	93.97	
BP-2	99.83	13.85	6.14	93.69	
BP-3	99.40	13.52	5.42	93.98	
BP-4	100.11	9.50	5.77	94.34	
KEI-4	100.94	12.30	4.16	96.78	
DCW-1	100.24	12.05	5.98	94.26	
DCW-2	100.06	11.40	5.79	94.27	
DCW-3	99.02	10.80	4.90	94.12	

Groundwater contours, and the resulting groundwater flow direction established from the elevation data, are graphically depicted in Figure 3. The direction of groundwater flow at the Site was established to be southeasterly and easterly, in a separate direction from the location of the stormwater outfall.

Select soil samples, screened by the PID, were submitted to GeoLabs, Inc. of Braintree, MA for analysis of VPH fractions. The results of the analysis are provided in Table 2. Certificates of analysis of all recent sampling are provided in Appendix L.

VPH soil samples DC-SG2 and DC-SH2, at monitoring well locations DCW-2 and DCW-3 respectively, reveal that the diesel fuel (from the line delivery failure) has not migrated to these locations.

9.2 Groundwater and Surface Water Sampling

On May 21, 2003, samples were collected from the stormwater outfall, monitoring wells BP-2, BP-3, BP-4, MW-A, and the private drinking water supplies at the Holmes and Malley residences (132 and 133 Main Street, respectively). The results are summarized in Tables 3 and 4.

The analytical results show that the private drinking water supplies at the private residences of Holmes and Malley have not been currently impacted by the diesel delivery line failure. The Holmes well sample identified elevated levels of MTBE and benzene, constituents of gasoline, that were originally discovered in 1997 (the MTBE level is higher than 1997 and the benzene level is lower than 1997). A quality assurance/quality control (QA/QC) sample from the Malley well showed detectable levels of the C9-C 18 Aliphatic petroleum range and the C11-C22 Aromatic petroleum range (below GW-1 drinking water standards).

On June 12, 2003, samples were collected from monitoring wells DCW-1, DCW-2, DCW-3, BP4 and the private drinking water supply at the Owens residence (151 Main Street). A QA/QC sample was also collected from the Malley residence (133 Main Street). These results are also summarized in Tables 3 and 4.

The analytical results show that the diesel delivery line failure has not migrated along a potentially preferred pathway outside the stormwater piping in Main Street. Monitoring well DCW-1 shows strong evidence of the past gasoline release associated with RTN 4-13333. The QA/QC sample for the Malley residence confirms that the detectable EPH readings from the May 21St collection were likely attributed to background laboratory conditions.

Additional rounds of groundwater and surface water sampling will be required to monitor the status of this situation.

Table 2
Positive Lab Results for Soil Samples
131 Main Street, Carver, MA
June, 2003

	Sample ID:	DC-SA2	DC-SB2	DC-SD2	DC-SE2		DC-SG2	DC-SH2			
Sample Location:		DCA	DCB	DCD	DCE		DCW-2	DCW-3	N	1CP Method	1
	Depth of Sample (ft):	5-10	5-10	5-10	5-10		5-10		Sta	andards for	Soil
	Lab ID:	135240	135241	135242	135243		135244	135245			
	Date Collected:	06/02/03	06/02/03	06/02/03	06/02/03		06/02/03	06/02/03	UCLs	S1/GW1	S2/GW1
Parameter	Units:	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	Methyl tert-butyl ether		0.524	ND	4.93		ND	ND	5,000	0.30	0.30
	Benzene		ND	ND	1.42		ND	ND	2,000	10	10
	Toluene		3.86	ND	15.0		ND	ND	10,000	90	90
	Ethylbenzene		9.61	ND	29.7] [ND	ND	10,000	80	80
	m & p-Xylenes		20.2	ND	80.8		ND	ND	10,000	500	800
	o-Xylene		11.0	ND	40.2		ND	ND	10,000	500	800
	Naphthalene		18.9	ND	62.8] [ND	ND	10,000	4.00	4.00
VPH	C5-C8 Aliphatic		89.5	59.9	167		64.3	52.5	5,000	100	500
Fractions	C9-C12 Aliphatic		81.8	ND	216		ND	ND	20,000	1000	2500
	C9-C10 Aromatic		ND	ND	ND] [ND	ND	5,000	100	100
									T		
D: 1 DA11	Naphthalene	2.13	4.72	ND	6.60		ND	ND	10,000	4.00	4.00
Diesel PAH	2-Methylnaphthalene	9.46	25.5	ND	43.2		ND	ND	10,000	4.00	4.00
Analytes	Acenaphthene	0.284	0.717	ND	1.27		ND	ND	10,000	20	20
-	Phenanthrene	2.17	6.24	ND	9.51	4	0.0642	ND	10,000	700	700
	Acenaphthylene	ND	0.210	ND	0.274		ND	ND	10,000	100	100
	Fluorene	1.27	2.68	ND	ND		ND	ND	10,000	400	400
	Anthracene	ND ND	2.32 ND	ND ND	0.910 ND		ND ND	ND ND	10,000	1000	2500
Other	Fluoranthene Pyrene	0.415	ND ND	ND ND	1.96	┪ ┡	ND ND	ND ND	10,000	1000 700	2000 1000
Target PAH	,	0.413 ND	ND ND	ND ND	ND		ND ND	ND ND	10,000	0.70	1.00
Analytes	Chrysene	ND ND	ND	ND	ND		ND	ND	400	7.0	10.0
Analytes	Benzo[b]Fluoranthene	ND	ND ND	ND	ND		ND	ND	400	0.70	1.00
	Benzo[k]Fluoranthene	ND	ND	ND	ND	1	ND	ND	100	7.0	10.0
	Benzo[a]Pyrene	ND	ND	ND	ND		ND	ND	100	0.70	0.70
	Indeno[1,2,3-c,d]Pyrene	ND	ND	ND	ND		ND	ND	100	0.70	1.00
	Dibenzo[a,h]Anthracene	ND	ND	ND	ND		ND	ND	100	0.70	0.70
	Benzo[g,h,i]Perylene	ND	ND	ND	ND	1	ND	ND	10,000	1000	2500
EPH	C9-C18 Aliphatic	2680	7960	62.2	10200		ND	ND	20,000	1000	2500
Fractions	C19-C36 Aliphatic	1080	2840	37.6	3740		17.2	ND	20,000	2500	5000
	C11-C22 Aromatic	1610	3530	18.8	3560		ND	ND	10,000	200	200

Note: Exceedance of Method 1 Standard is highlighted.

Table 3
Positive Lab Results for Groundwater and Surface Water Samples
131 Main Street, Carver, MA
June, 2003

		_	ORMWAT OUTFALL	ER						DCW-1 DUP						
Sample ID:		DC-A1	DC-B1	DC-C1	BP-2	BP-3	BP-4	DCMWA	DCW-1	DCW-A	DCW-2	DCW-3	1	MCP Me	thod 1 Star	ndards
	Lab ID:	134704	134705	134706	134702	134703	135585	134710	135581	135584	135582	135583				
	Date Collected:	05/21/03	05/21/03	05/21/03	05/21/03	05/21/03	06/12/03	05/21/03	06/12/03	06/12/03	06/12/03	06/12/03	UCLs	GW1	GW2	GW3
Parameter	Units:	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Methyl tert-butyl ether		, ,		ND	ND	15.3	992	6380	5930	243	ND	100,000	70	50,000	50,000
	Benzene				ND	ND	ND	40.4	11.7	9.40	ND	ND	70,000	5	2,000	7,000
	Toluene				ND	ND	ND	22.0	1030	1110	ND	ND	100,000	1000	6,000	50,000
	Ethylbenzene				ND	ND	ND	202	1500	1580	ND	ND	100,000	700	30,000	4,000
	m & p-Xylenes				ND	ND	ND	454	7090	7760	ND	ND	100,000	10000	6,000	50,000
	o-Xylene				ND	ND	ND	143	3220	3380	ND	ND	100,000	10000	6,000	50,000
	Naphthalene				ND	ND	ND	25.2	446	442	ND	ND	60,000	20	6,000	6,000
VPH	C5-C8 Aliphatic				ND	ND	ND	ND	ND	ND	ND	ND	100,000	400	1,000	4,000
Fractions	C9-C12 Aliphatic				ND	ND	ND	ND	ND	ND	ND	ND	100,000	4000	1,000	20,000
	C9-C10 Aromatic				ND	ND	ND	961	5410	5650	ND	ND	100,000	200	5,000	4,000
	Naphthalene	113	110	117	ND	ND	ND	8.21	95.3	88.2	ND I	ND I	60.000	20	6,000	6,000
Diesel PAH		4597	4524	4854	ND ND	ND ND	ND ND	1.30	19.3	00.2 18.3	ND ND	ND ND	100.000	20 10	10.000	3,000
Analytes	Acenaphthene	51.5	40.9	31.8	ND ND	ND ND	ND ND	ND	19.3 ND	ND	ND ND	ND ND	50.000	20	10,000 NA	5,000
Analytes	Phenanthrene	73.9	40.9 ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3,000	300	NA NA	50
	Acenaphthylene	13.1	10.3	9.00	ND ND	ND	ND	ND	ND	ND	ND ND	ND	30.000	300	NA NA	3,000
	Fluorene	182	180	150	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	30,000	300	NA NA	3,000
	Anthracene	308	260	281	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	30,000	2000	NA NA	3,000
	Fluoranthene	9.91	8.12	10.0	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	3,000	300	NA NA	200
Other	Pyrene	58.4	63.4	70.9	ND	ND	ND	ND	ND	ND	ND	ND	30.000	200	NA NA	3,000
Target PAH	,	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	30,000	1.0	NA	3,000
Analytes	Chrysene	2.22	2.76	2.86	ND	ND	ND	ND	ND	ND	ND	ND	30.000	2.0	NA	3,000
, a.u., 100	Benzo[b]Fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	30,000	1.0	NA	3,000
-	Benzo[k]Fluoranthene	0.636	0.742	0.265	ND	ND	ND	ND	ND	ND	ND	ND	30,000	1.0	NA	3,000
	Benzo[a]Pyrene	0.431	0.474	0.571	ND	ND	ND	ND	ND	ND	ND	ND	30,000	0.20	NA	3,000
	Indeno[1,2,3-c,d]Pyrene	ND	0.247	0.367	ND	ND	ND	ND	ND	ND	ND	ND	30,000	8.0	10	5,000
	Dibenzo[a,h]Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	30,000	0.50	NA	3,000
	Benzo[g,h,i]Perylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	30,000	300	NA	3,000
EPH	C9-C18 Aliphatic	2040000	2040000	2150000	ND	192	ND	ND	ND	702	ND	ND	100,000	4000	1,000	20,000
Fractions	C19-C36 Aliphatic	732000	696000	721000	ND	ND	ND	ND	ND	ND	ND	ND	100,000	5000	NA	20,000
	C11-C22 Aromatic	451000	858000	788000	ND	ND	ND	ND	150	104	ND	ND	100,000	200	50,000	30,000

Note: Exceedance of Method 1 Standard is highlighted.

Table 4
Positive Lab Results for Private Drinking Water Supply Samples
131 Main Street, Carver, MA
June, 2003

		HOLMES RESIDENCE		MALLEY RESIDENCE						
-	Sample ID:	DC-D1	DC-E1	DC-F1	DC-E1A	RESIDENCE DC-G1	 	MCDM	ethod 1 Sta	ndordo
	Lab ID:	134707	134708	_	135586	135239		IVICP IVI	emod i Sta	iridards
	Date Collected:	05/21/03	05/21/03		06/12/03	06/21/03	UCLs	GW1	GW2	GW3
Parameter	Units:	00/= !/ 00					μg/L	μg/L	μg/L	μg/L
Parameter	Methyl tert-butyl ether	μg/L 192	μg/L ND	μg/L ND	μg/L	μg/L ND	μg/L 100,000	μg/L 70	μg/L 50,000	μg/L 50,000
	Benzene	5.20	ND ND	ND ND		ND ND	70,000	70 5	2,000	7,000
	Toluene	ND	ND ND	ND ND		ND ND	100,000	1000	6,000	50,000
	Ethylbenzene	ND ND	ND ND	ND ND		ND ND	100,000	700	30,000	4,000
-	m & p-Xylenes	ND	ND ND	ND ND		ND ND	100,000	10000	6,000	50,000
	o-Xylene	ND ND	ND ND	ND ND		ND ND	100,000	10000	6,000	50,000
	Naphthalene	ND ND	ND ND	ND ND		ND ND	60,000	20	6,000	6,000
VPH	C5-C8 Aliphatic	ND	ND ND	ND ND		ND ND	100,000	400	1,000	4,000
Fractions	C9-C12 Aliphatic	ND ND	ND ND	ND ND		ND ND	100,000	4000	1,000	20,000
Fractions	C9-C12 Aliphatic	ND ND	ND ND	ND ND		ND ND	100,000	200	5,000	4,000
-	C9-C10 Alomatic	ND	IND	IND		IND	100,000	200	3,000	4,000
-	Naphthalene	ND	ND	ND	ND		60,000	20	6,000	6,000
Diesel PAH	2-Methylnaphthalene	ND	ND	ND	ND		100,000	10	10,000	3,000
Analytes	Acenaphthene	ND	ND	ND	ND		50,000	20	NA	5,000
	Phenanthrene	ND	ND	ND	ND		3,000	300	NA	50
	Acenaphthylene	ND	ND	ND	ND		30,000	300	NA	3,000
	Fluorene	ND	ND	ND	ND		30,000	300	NA	3,000
	Anthracene	ND	ND	ND	ND		30,000	2000	NA	3,000
	Fluoranthene	ND	ND	ND	ND		3,000	300	NA	200
Other	Pyrene	ND	ND	ND	ND		30,000	200	NA	3,000
Target PAH	Benz[a]Anthracene	ND	ND	ND	ND		30,000	1.0	NA	3,000
Analytes	Chrysene	ND	ND	ND	ND		30,000	2.0	NA	3,000
	Benzo[b]Fluoranthene	ND	ND	ND	ND		30,000	1.0	NA	3,000
	Benzo[k]Fluoranthene	ND	ND	ND	ND		30,000	1.0	NA	3,000
	Benzo[a]Pyrene	ND	ND	ND	ND		30,000	0.20	NA	3,000
	Indeno[1,2,3-c,d]Pyrene	ND	ND	ND	ND		30,000	8.0	10	5,000
	Dibenzo[a,h]Anthracene	ND	ND	ND	ND		30,000	0.50	NA	3,000
	Benzo[g,h,i]Perylene	ND	ND	ND	ND		30,000	300	NA	3,000
EPH	C9-C18 Aliphatic	188	266	ND	ND		100,000	4000	1,000	20,000
Fractions	C19-C36 Aliphatic	ND	ND	ND	ND		100,000	5000	NA	20,000
	C11-C22 Aromatic	ND	112	ND	ND		100,000	200	50,000	30,000

Note: Exceedance of Method 1 Standard is highlighted.

10.0 MIGRATION PATHWAYS AND EXPOSURE POTENTIALS

The Site is currently used for the retail distribution of gasoline and diesel fuels. The primary pathways of VOC migration would be soil, groundwater, surface water and air.

Soil migration of VOCs could be intercepted by the stormwater collection system along Main Street. This interception would open a direct pathway to South Meadow Brook. Investigations and sampling to date show that this route has not developed.

Groundwater migration of VOCs is currently unknown. The gasoline release at the residence of William Holmes, across Main Street from the Site, could be caused from the Site. Until additional data is collected, this pathway cannot be conclusively eliminated. An additional groundwater pathway could be the stormwater collection system in Main Street. Petroleum contaminated groundwater could infiltrate into the stormwater collection system and discharge directly into South Meadow Brook. Again, subsurface investigations and sampling to date show that this route has not developed.

The migration of petroleum residuals from the surface appears to be an on-going threat. Precipitation events directly carry small amounts of petroleum and waste oil off the Site into the first downgradient catch basin, in front of the residence of Paul Malley. From this location, stormwater carries the constituents directly into South Meadow Brook. The potential of chronic harm to ecological receptors within the South Meadow watershed is an on-going threat and requires a long term solution.

Finally, the migration of elevated concentrations of VOC vapors within buildings cannot be eliminated as a potential pathway. Air sampling of petroleum hydrocarbons at the residences on Site and at the surrounding properties is required to determine this potential threat.

11.0 NUMERICAL RANKING SYSTEM SCORESHEET

Pursuant to 310 CMR 40.1511 of the MCP, a Numerical Ranking System (NRS) scoresheet has been completed based upon the information and findings within this report (see Appendix M).

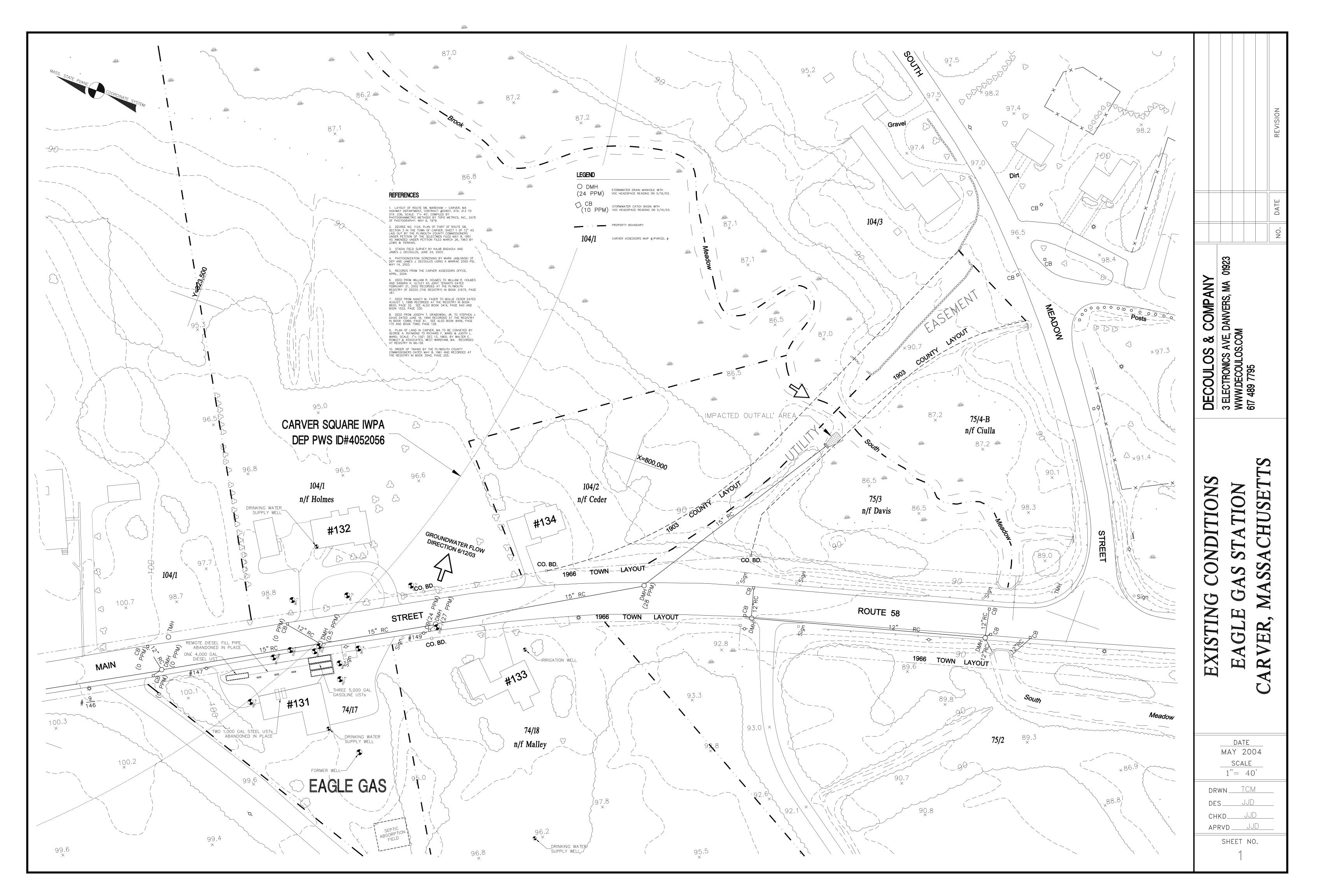
The total score from the NRS Scoresheet was 742 and the Site is therefore classified as Tier IA. See 310 CMR 40.0520(3).

12.0 SUMMARY AND CONCLUSIONS

The property is identified as the Eagle Gas Station at 131 Main Street in Carver, Massachusetts (the Site). The current property owner is Najib Badaoui, Trustee, Marina Realty Trust and the current operator is Eagle Gas, Inc (Eagle). The Site is referenced by the Carver Assessors as on Map 74, Parcel 17 and the title is recorded at the Plymouth Registry of Deeds (PRD) in Book 25358, Page 112.

Eagle maintains four steel, double-walled, underground storage tanks (USTs) on Site. Three of the USTs have a capacity of 5,000 gallons, store gasoline and are located underneath the southerly section of the concrete pad as shown on Sheet 1. The fourth UST, with a capacity of 4,000 gallons, stores diesel fuel and is located under the northerly section of the concrete pad.

An unoccupied two-bedroom apartment exists on the second floor of the building on Site. A private drinking water supply well is located beneath the station building in the southwestern corner of the building. The well is not currently being used for drinking water purposes.


Four separate releases are currently on-file with DEP related to the Site: RTN 4-12848, 4-13333, 4-17582 and 4-17825. Two of the releases occurred prior to Eagle's operation. The third release (17582) appears to be caused by Eagle and the source of the release (the diesel fuel fill pipe) has been eliminated. The NAPL discovered from this release appears limited and confined to a small area (approximately 100 square feet) within the Main Street right-of-way.

The fourth release appears historic, with many potential sources contributing to significant cumulative depositions within the Main Street stormwater collection system. Headspace screenings of stormwater structures show strong correlation of impact to the collection system from the Site.

It is clear that significant further investigations and remedial actions are required at the Site and surrounding area. The work will require the cooperation of all the potentially responsible parties identified to date; town officials; and, representatives from the Department. Funding from both private and public sources will be required and significant public involvement will be warranted.

This report is subject to the limitations outlined in Appendix A.

- 1. The observations described in this report were made under the conditions stated therein. The conclusions presented in the report were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by Client. The work described in this report was carried out in accordance with the Terms and Conditions in our contract.
- 2. In preparing this report, Decoulos & Company has relied on certain information provided by State and local officials and other parties referenced therein, and on information contained in the files of State or local agencies available to Decoulos & Company at the time of the site investigation. Although there may have been some degree of overlap in the information provided by these various sources, Decoulos & Company did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this site investigation.
- 3. Observations were made of the Site and of structures on the Site as indicated within the report. Where access to portions of the Site or to structures on the Site was unavailable or limited, Decoulos & Company renders no opinion as to the presence of hazardous materials or oil, or to the presence of indirect evidence relating to hazardous material or oil, in that portion of the Site or structure. In addition, Decoulos & Company renders no opinion as to the presence of hazardous material or oil, or the presence of indirect evidence relating to hazardous material or oil, where direct observation of the interior walls, floor, or ceiling of a structure on a Site was obstructed by objects or coverings on or over these surfaces.
- 4. Decoulos & Company did not perform testing or analyses to determine the presence or concentration of asbestos at the Site or in the environment at the Site.
- 5. The purpose of this report is to assess the physical characteristics of the subject Site with respect to the presence in the environment of hazardous material or oil. No specific attempt was made to check on the compliance of present or past owners or operators of the Site with Federal, State, or local laws and regulations, environmental or otherwise.
- 6. Except as noted within the text of the report, no quantitative laboratory testing was performed as part of the site assessment. Where such analyses have been conducted by an outside laboratory, Decoulos & Company has relied upon the data provided, and has not conducted an independent evaluation of the reliability of these data.

THE COMMONWEALTH OF MASSACHUSETTS DEPARTMENT OF REVENUE

Underground Storage Tank Petroleum Product Cleanup Fund
200 Arlington Street, Floor 1C
Chelsea, Massachusetts 02150

CERTIFICATE OF COMPLIANCE

100% Reimbursement

FOR PETROLEUM DISPENSING FACILITIES

Date Issued: 04/22/2004	Date Expires: 04/22/2009
Certificate of Compliance	e Number: 13175
131 M	IAIN ST
Street Address	s of UST Facility
EAGLE	GAS INC
Pacility Name (Corporatio	n. Individual, or Other Entity,
***************************************	GAS INC
Owner at Time	e of Certification
CARVER	PLYMOUTH
City	County
MA	02330
State	Z:p Code
	66-9098/7/7
Issued By:	Number
William J. Alpine.	Executive Director

This Certificate of Compliance is granted in accordance with the provisions of M.G.L. Chapter 21J. The UST Facility identified herein is presumed by the Department of Revenue to have met the full regulatory compliance requirements of 503 CMR 2.00, and as such, is presumed to be eligible to use the Underground Storage Tank Petroleum Product Cleanup Fund as a mechanism of Financial Responsibility that meets the requirements of 527 CMR 3.07(L) as it perfains to Petroleum Product motor fuel. This presumption of compliance is rebuttable. Issuance of this Certificate of Compliance is conditional upon the above identified UST Facility maintaining a valid FP-29C and all other requirements set forth in 502 CMR 4.00, 503 CMR 2.00, 527 CMR 5.00, CMR 9.00, and CMR 15.00.

(This Certificate Must Be Posted or Available on the Premises)

Commonwealth of Massachusetts - Department of Fire Services Executive Office of Public Safetry - UST Regulatory Compliance Unit

	Notification for Storage Tanks	Regulated Und	er 527 CMR 9.00
Forward co	ompleted form, signed by local fire department, to: Masservices, P.O. Box 1025 - State Road, Stow, MA 01	Fire Dept. Use Only	
Use Form	FP-290R to notify of tank removals or closures in pl		Date Received: 1-10-2001 Fire Dept. ID# 12-3052
	e (978) 567-3302		Fire Dept. ID# (23052)
<u> </u>	artment retains one copy of FP-290)		The Sept. of the
	ew Facility (see instructions, #1) 🔀 B. Amended	C. Renewai	State Use Only
ach location of inks are owned that be completed to be completed to the local firm opy of the Iocal firm opy	S: Form FP-290 (Notification for Aboveground and Underground Storage ontaining underground or aboveground storage tanks regulated under 527 d at this location, photocopy the following pages and staple continuation seted in duplicate. Although the form may be photocopied, the facility owners are not sufficient. Both copies of the department, who will check all information and cartify the forms. The 290 for its records, and the facility owner shall be responsible for forwervices at the address above. The local fire department will issue the paration is not complete until the FP-290 is received and checked by the US in this form are to be answered. Incomplete forms will be returned, means a tank or tanks located at a site where tanks have not been previous address must include both a street number and a street name. Post official will cause a registration to be returned. It geographic location of facility direction from closest intersection, e.g., (facility at 199 North Street is located (intersection).	heets to the form. The FP-290 or or owner's representative must he FP-290 are to be torwarded the fire department will retain one arding the other copy to the ermit portion of the FP-290; T Regulatory Compliance Unit. Lusty located. The box numbers are not is not provided, please indicate ted) 400 yards southeast of	A. Facility Number B. Date Entered C. Clerk's Initials D. Comments
	GENERAL I	NFORMATION	
aboveground Code of Mas storage tank removed with The owner of local fire dep address, or live regulation by Underground Each owner of shall, within the Fire Services known, the occupant was remdepartment of the tank, date tank cease of the ground also specify, surface of the operator of a secental known installation, occupant was ceased being ground prior abandoned by the department operator, the	Required on Form FP-290 is to be used as Notification, Registration, and Permit for and underground storage tanks and tank facilities regulated under 527 sachusetts Regulations 9,00. No regulated aboveground or underground facility shall be installed, maintained, replaced, substantially modified or hout a permit (FP-290) issued by the head of the local fire department, fany storage facility shall within seven working days notify the head of the airment and the Dept. of Fire Services of any change in the name, elephone number of the owner or operator of a storage facility subject to attend the Dept. of Fire Services of any change in the name, elephone number of the owner or operation on or after Jan. 1, 1991, thirty days after the tank is first put into operation, notify the Department of a the elepartment) of the existence of such tank, specifying, to the extent where of the tank, date of installation, capacity, type, location, and uses of y no later than Jan. 31, 1991, each owner of an underground storage tank peration at any time after Jan. 1, 1974, regardless of whether or not such toved from beneath the surface of the ground at any time, shall notify the of the existence of such tank, specifying, to the extent known, the owner of a of installation, capacity, type, and location of the tank, and the type and obstances stored in such tank, or which were stored in such tank before a prior to the submittal of such notice to the department. Such notice shall notify the department of the existence of such tank as removed from beneath the surface of prior to the submittal of such notice to the department. Such notice shall notify the department of the existence of such tank, specifying, to the notice to the department. The ny tank that has no owner or whose owner cannot be definitely shall notify the department of the existence of such tank, specifying, to the napacity, type, and location of the tank, and the type and quantity of paracity, type, and location of the tank, and the type and quantity of paracity, type,	fuel for noncommercial purposes use on the premises where sto Penalities: Any owner who know to a civil penalty not to exceed S which false information is submit Aboveground Storage Tanks 527 CMR 9.00 requires the registion of the storage of Hazardo Combustible Liquids. Exception #1: Aboveground tank 12.00 (Requirements for the In Exception #1: Aboveground tank 12.00 (Requirements for the In Exception #2: (a) a farm or residence of the Information of Information Information of Information of Information of Information Informa	altank of 1,100 gallons or less capacity used for storing moto, or (b) a tank used for storing heating oil for consumptive red are not required to be registered under 527 CMR 9.00 rolly fails to notify or submits faise information shall be subject 25,000 for each tank for which notification is not given or to ited. (MGL Chapter 148, section 38H, 527 CMR 9.00) stration of any aboveground storage tank which meets the or vertical tank, equal to or less than 10,000 gallons are substances. Hazardous Wastes, or Flammable or softmark than 10,000 gallons capacity regulated by 520 CMF stallation without back fill above or below grade, and is substances. Hazardous Wastes, or Flammable or softmark than 10,000 gallons capacity regulated by 520 CMF stallation of Tanks Containing Fluids Other Than Water in our required to be registered under 527 CMR 9.00. ential tank of 1,100 gallons or less capacity used for storing purposes, or (b) a tank used for storing heating oil to is where stored are not required to be registered under 527 cmr shall so therwise provided, be punished by the 80ard of Fire cept as otherwise provided, be punished by a fine of not less one than one thousand dollars. (MGL, Chapter 148, section of notification forms should be signed by both the tank owner the copy will be retained by the fire department, and the tank by to the address at the top of this page. It to the address at the top of this page. It to the address at the top of this page.
	I. OWNERSHIP OF TANK(S)	II. Lo	ecation of Tank(s)
)wner Name	(Corporation, Individual, Public Agency, or Other Entity)	If known, give the geograp	ohic location of tanks by degrees, minutes, and 2, 36, 12 N Long. 85, 24, 17W
	igu Das Ane	Latitude	Longitude
Street Address	Main St.	Eagle ?	th o c meadow RD It intersection (see instructions #2) It intersection (see instructions #2) It is a policy able
City	State Di Code	Street Address (P.O. Box not acc	piable - see instructions #2)
County	mouth	Custer	Mac 22330 State Zp Code
Phone Number ((Include Area Code) Owner's Employer Federal ID #	County Dly	<i>y</i>

III. Type	OF OWNER	IV. Indian Lands					
☐ Federal Government ☐ State Government	Commercial (storage and sale)	I —	Tanks are located on land within an Indian Reservation or on other trust lands.			vation or on	
☐ Local Government	☐ Private (storage and use)	☐ Tan	ks are owned	by native Am	erican nation, tribe	e, or individual.	
	V.	TYPE OF	FACILITY				
Select the Appropriate Fac	cility Description: (check a	Il that apply)					
Gas Station	rina	· <u></u>	Trucking/Trans	port			
Petroleum Dist		ilroad		Utilities			
Airport		deral - Military		Residential	•		
Aircraft Owner Vehicle Dealer		ustrial ntractor		Farm Other (evoluin)			
verncie Dealer							
VI. CONTACT PERSON IN CHARGE OF TANKS							
Name: NAN'B BAI	• 1	_		Phone	Number (include are	a code):	
Job Title: Course		Mun 5		Home:			
	Ca	wer To	rac-	Busines	s: <u>508-866-</u> 9	1098	
VII. FINANCIAL RESPONSIBILITY							
☐ I have met the financial responsibility requirements in accordance with 527 CMR 9.00.							
Check all that apply:			-				
☐ Self Insurance	 🗆 G	uarantee		1 0	Letter of Credit		
☐ Commercial Insura	nce 🗆 S	☐ Surety Bond			☐ Trust Fund		
☐ Risk Retention Gro	up I 🔀 S	ate Fund			Other Method Allov	wed - Specify	
	1			<u> </u>			
	VIII. ENVIR	ONMENTAL	SITE INFO	RMATION	·····		
This information should be	available from local heal	th agent, cons	ervation com	mission, or pl	anning department	i.	
	n wellhead protection are			′es XINc □			
	n surface drinking water s		on area □ Y	es XINc □	Jaknowa		
	within 100 feet of a wetlar			es XNo □	Jnknown		
	within 300 feet of a stream			es 158 No □1			
···	ON OF STORAGE TA			MPLETE FOR E	ACH TANK AT THIS L	OCATION)	
Tank identification Numbe				Tank No. <u>3</u>	Tank No. 4	Tank No	
1. Tank status		}]				
a. Tank mfr's	serial # (if known)						
t	o. Currently in Use						
c. Temporarily Out o	of Use (Start Date)	[
	anently Out of Use						
e. Aboveground stor Underground s	rage tank (AST) or ☐ AStorage tank (UST)	T X UST □	AST XLUST	□ AST 💢 US	T DAST XIUST	□ AST □ UST	
2. Date of Installation (mo./	day/yr.) 4	189	4189	4/89	4/84		
3. Estimated Total Capacity	700	5000	5-000	4000			

Tank Identification Number (cont.)	Tank No/_	Tank No. 🔼	Tank No. 3	Tank No. <u>4</u>	Tank No
Tank Identification Number (cont.) 4. Substance Currently or Last Stored a. Gasoline Motor vehicle or other use b. Diesel Motor vehicle or other use c. Kerosene d. Fuel Oil* "Consumptive Use" tanks need not be registered. "Consumptive Use" fuel used exclusively for area heating and/or hot water. e. Waste Oil f. Other, Please specify	MV Marina other other	MV Marina other other other	MV Marina other other	MV Marina other other other	MV Marina other other
Hazardous Substance (other than 4a thru 4e above) CERCLA name and/or CAS number Mixture of Substances					
Please specify 5. Material of Construction - Tank (mark only one)				
Bare steel (includes asphalt, galvanized and epoxy coated) Cathodically protected steel Composite (steel with fiberglass) Fiberglass reinforced plastic (FRP) Concrete Unknown Other Please specify					
3. Type of Construction-Tank (mark only one) Single walled Double walled Unknown Other Please specify Is tank lined? Does tank have excavation liner?	☐ Yes ➢ No	☐ Yes No	Yes X No	Yes No	Yes No

Tank Identification Number (cont.)	Tank No/_	ششی Tank No.	تی Tank No	Tank No. 4	Tank No
7. Material of Construction - Piping (mark only one	e)				
Bare steel (includes asphalt, galvanized and epoxy coated)					
Cathodically protected steel					
Fiberglass reinforced plastic (FRP)					
Flexible					
Copper					
Unknown					
Other					
Please specify	<u> </u>	<u> </u>			
8. Type of Construction - Piping (mark only one)					· ·
Single walled					
Double walled			X		
Unknown					
Other					
Please specify					
Has piping been repaired?	☐ Yes Ž ^M No	⊡ Yes ঠNo	□ Yes 🕱 No	□ Yes Ŋ No	☐ Yes ☐ No
Is piping gravity feed?	□ Yes ŽČ No	⊡ Yes)≨ No	🗆 Yes 🎘 No	□ Yes 為 No	☐ Yes ☐ No
Date					
x	. CERTIFICA	TION OF CO	MPLIANCE		
1. Installation					
A. Installer certified by tank and piping manufacturers			ب		
Installer certified or licensed by the implementing agency					
C. Installation inspected by a registered engineer					
Installation inspected and approved by the implementing agency					
Manufacturers' installation checklists have been completed					
F. Another method allowed by 527 CMR 9.00. Please specify					
Tank Leak Detection (mark only one)	Tank	Tank	Tank	Tank	Tank
		V/////	*/////	V/////	V/////
A. Double-wall tank - Interstitial monitoring	$X /\!\!/\!\!/$	\boxtimes			
A. Double-wall tank - Interstitial monitoring B. Approved in-tank monitor					
_					
B. Approved in-tank monitor					
B. Approved in-tank monitor C. Soil vapor monitoring (check one below)					

Tank Identification Number (cont.)	Tank N	io	Tanki	Vo. 4	Tank N	io. <u> 3</u>	Tank N	lo. <u>'</u>	Tank N	o
3. Piping Leak Detection (mark only one)		Piping		Piping	V ////	Piping		Piping		Piping
A. Pressurized										
a. Interstitial space monitor										
b. Product line leak detector										
(mark all that apply below)						7/////		X/////		
☐ Automatic flow restrictor*								<i>X/////</i>		
☐ Automatic shut-off device* ☐ Continuous alarm*										
										
 Also requires annual test of device and piping tightness test or monthly vapor monitoring of soil. 										
 B. Suction: Check valve at tank only (Requires interstitial space monitor or line tightness test every three years) 										
 □ Interstitial space monitor □ Line tightness test 										
 C. Suction: Check valve at dispenser only (No monitor required) 										
D. Other method allowed by 527 CMR 9.00. Please specify										
4. Date of last tightness test (tank & piping)	1/3	12011	1/2	12001	1/2/	2001	1/2/	2001		
5. Gravity feed piping										
6. Spill containment and overfill protection	Tank		Tank		Tank		Tank		Tank	
A. Spill containment device installed										
B. Overfill prevention device installed	\boxtimes						\boxtimes			
7. Daily Inventory Control (mark only one)	i i									
Manual gauging by stick and records reconciliation										
Mechanical tank gauge and records reconciliation										
C. Automatic gauging system										
8. Cathodic Protection (if applicable)	Tank	Piping	Tank	Piping	Tank	Piping	Tank	Piping	Tank	Piping
A. Sacrificial Anode Type							KI.			
B. Impressed Current Type										
C. Date of Last Test		'				<u></u>			\ 	
Certification of Compliance No.:	5									
XI. CERTI	FICATI	ON (Rea	ad and sign	after com	pleting all	sections)	· · ·			
OTE: Both the copy being sent to the Dept. of Fire Services and coepted on either document.	тре сору та	tained by th	e local fire d	epartment r	nust be sign	ed separate	ly. A photo	ocopied sign	nature will no	t be
declars under panalty of perjury that I have personally examined iquiry of those individuals immediately responsible for obtaining t									pased on my	
ame and official title of owner or owner's authorized representation		Signature:	•						ite:	
VASIB BADACUI	<=	· (115/0	1

Oil Burner / Oil Tank Data

Record Updated 4/16/98 Reas

Reason Underground Tanks

Owner/Occupant Richard Nantals

Address 131 Main Street Phone

Property Owner

Installation/ Tank Information

Equipment Installed Permit #

Burner Location Trade Name Installation Date

Fuel Type Burner: New/Existing

Installation Co.

Co. Address Co. Phone

Installer Certificate #

Tank Location Underground Tank Size 1000 Tank Type

Storage Tank: New/Existing Existing Tank Contents Gasoline Date

Tank Owner Name Richard Nantais No. of Tanks 2

Tank Owner Address

UST Removal Information

UST Removal Co. Permit #

UST Co. Address UST Co. Phone

Date UST Removed

No. of UST Tanks Size Of Tanks

Substance Last Stored

Contamination Assessment

Company Or Individual: Phone No.

Address:

Firm Transporting Waste

Approved Tank Disp. Yard

Tank Yard #

Dig Safe approval number

DEP Inspector

Inspection Notes

Permit to abandon in place.

Prior to filling tanks, Building Inspector was on site and determined that removing the tanks would compromise the structural integrity of the building. Permit granted to empty, clean and fill with concrete slurry, Two-1000 Gal. underground storage tanks formerly used for gasoline.

DEH

Oil Burner / Oil Tank Data

Record Updated 4/16/98 Reason Underground Tanks

Owner/Occupant Richard Nantais

Address 131 Main Street Phone

Property Owner

Installation/ Tank Information

Equipment Installed Permit #

Burner Location Trade Name Installation Date

Fuel Type Burner: New/Existing

Installation Co.

Co. Address Co. Phone

Installer Certificate #

Tank Location *Underground* Tank Size 1000 Tank Type

Storage Tank: New/Existing Existing Tank Contents Gasoline Date

Tank Owner Name Richard Nantais No. of Tanks 2

Tank Owner Address

UST Removal Information

UST Removal Co. Permit #

UST Co. Address

UST Co. Phone

Date UST Removed

No. of UST Tanks Size Of Tanks

Substance Last Stored

Contamination Assessment

Company Or Individual: Phone No.

Address:

Firm Transporting Waste

Approved Tank Disp. Yard

Tank Yard #

Dig Safe approval number

DEP Inspector

Inspection Notes

Permit to abandon in place.

Prior to filling tanks, Building Inspector was on site and determined that removing the tanks would compromise the structural integrity of the building. Permit granted to empty, clean and fill with concrete slurry, Two-1000 Gal. underground storage tanks formerly used for gasoline.

DEH

Executive Office of Public Safety

Department of Fire Services-Office of the State Fire Marshal

P.O. Box 1025, State Road, Stow, Mc 01775

Date: 41698 APPLICATION FOR PERMIT STAPPLATE:
C. 82 S.40 M.G.L.
To: Head of Fire Department: CATCUEC-
City / Town In accordance with the provisions of Chapter 148, M.G.L. as provided in Section 148; 38A application is hereby made by:
Name: RICHARD NANTALS (Full name of person, firm or corporation)
Address: 133 MAN STREET CARVER MA. (Street or P.O. Box) (City/Town) (State) (Zip Code)
For Permission to: ABANDON, IN PLACE, TWO 1000 BAL UNDECKTONNO STOTAGE TANKS State clearly the purpose for which the permit is requested: TO EMPM, CLEAN AND FILL WITH CONCRETE SLUKRY, TWO 1000 BALL UNTILL WITH CONCRETE SLUKRY, TWO 1000 BASOLINE JANDBLEDON NO STOTAGE THINKS FORMERLY USED FOR CASOLINE
Name of competent operator if applicable: Date Issued 5th Date Pointed to be
Name of competent operator if applicable: Date Issued Date Rejected
(Foil MUHADO NANTAIS).
The Commonwealth of Massachusetts Executive Office of Public Safety Department of Fire Services-Office of the State Fire Marshal P.O. Box 1025, State Road, Stow, MCN 01775
Date: 41698 PERMIT DIG SAFE NUMBER
C. 82 S.40 M.G.L.
In accordance with the provisions of Chapter 148, M.G.L. as provided in Section 145; 38 this permit is granted to:
Name: RIGHARD NANTALS (Full name of person, tirm or compration)
For Permission to: APANDON IN PLACE TWO ICOC GAL UNDERGOOD STOICAGE TANKS State clearly the purpose for which the permit is granted: TO EMPTY, CLEAN AND FILL WITH CONCRETE SLUTGE, TWO - 1080-6AL UNDERGROUND STORAGE TANKS FORMERLY USED FOR 6ASOLINE.
Restrictions:
Location: 133 MAIN STREET, CARVERS Fee Paid: The Dring Will Expire On: 430-98 Signature and Title of Official Granting Permit: Fire CARE

⇒(THIS PERMIT MUST BE CONSPICUOUSLY POSTED UPON THE PREMISES 1 ~

Executive Office of Public Safety

Department of Fire Services-Office of the State Fire Warshal

P.O. Box 1025, State Road, Stow, MA 01775

ADDITION FOR DEDMIT

DIG SAFE NUMBER

Date: 41698 APPLICATION FOR PERMIT STARL DATE:	
C. 82 S.40 M.G.L.	
To: Head of Fire Department: City / Town In accordance with the provisions of Chapter 148, M.G.L. as provided in Section 148:38A application is hereby made by	
Name: RIGHARD NANTALS (Full name of person, firm or corporation)	
Address: 133 MAN STREET CARNER MA. (Street or P.O. Box) (City/Town) (State) (Zip Code)	
For Permission to: ABANDON, IN PLACE, TWO 1000-6AL UNDERGROUND STORAGE State clearly the purpose for which the permit is requested:	
TO EMPM CLEAN AND FILL WITH CONCRETE SLURRY, TWO 1000 DAY UNDERLOODED STORAGE THINKS FORMERLY USED FOR CASCLINE	
Name of competent operator if applicable: (APVE2)	
Date Issued (*) Date Rejected { }: 4-16-98 By: Fee Pair (*) Fee Due { } Amount: Applicant Signature: Bulance description: Fire Department Number:	
(If Applicable)	

NAME AND ADDRESS _	A. W. ARRETTH, INC.		
OF APPROVED TANK YARD	NEW BEDFORD, MA 07744		
APPROVED TANK YARD N	10. 2 0 1-0 1 C		
Tank Yard Ledger 502	2 CMR 3.03(4) Number: X	00746	
delivered to this "approve that the segulation 502 CMR 3.00 P. A valid permit was issued this tank to this yard.	rovisions for Approving Underground	or partnership <u>InUt State Tuny</u> e with Massachusetts Fire Prevention Steel Storage Tank dismantling yards. t FDID# 2 3 0 5 2 to transport s authorized representative:	
STONATION	- Trep	3-20-89 DATE SIGNED (000)
This signed receipt of di FDID# 2 3 052 purs	sposal must be returned to the loca want to 502 CMR 3:00. (EACH TANK ML	1 head of the fire department	,k.
FORM F.P. 291	(OVER)	MASSACHUSETTS STATE FLRE MARSHAL'S OFF	TCE
NAME AND ADDRESS	OF UNDERGROUND STEEL STORAG	SE TANK	
OF APPROVED TANK YARD APPROVED TANK YARD	NEW PERFORM, NA 0.746		
Tank Yard Ledger 502	2 CMR 3.03(4) Number:	200747	
I certify under penalty o delivered to this "approv regulation 502 CMR 3.00 P	of law I have personally examined the red tank yard" by firm, corporation and accepted same in conformance rowisions for Approving Underground	e underground stepl storage tark /	_F 2
	of approved tank pard owner or owner	s authorized representative: Real d	
Mis signed receipt of di FDIDI 23052 purs	sposal must be returned to the local must to 502 CMR 3:00. (EACH TANK MI	DATE SIGNED 1 head of the fire department. ST HAVE A RECEIPT OF DISPOSAL) QC.	
		, , , , , ,	

	CO SUMMER VIEW		OFFICE AND ADDRESS OF THE PARTY
OF APPROVED TANK YARD	NEW STATE OF THE S		
APPROVED TANK YARD NO.	2 0 0 0		
Tank Yard Ledger 502 CM	IR 3.03(4) Number:	200741	Salv
delivered to this "approved to the Regulation 502 CMR 3.00 Provi A valid permit was issued by this tank to this yard. Name and official title of appoint of dispose the signed receipt of	ank yard" by firm, corporation and accepted same in conformance sions for Approving Underground	e with Massachusetts Fire Prever Steel Storage Tank dismantling t FDID# 23 05 2 to transp s authorized representative: DATE SIGNED L head of the fire department	ntion yards.
FORM F.P. 291	(OVER)	MASSACHUSETTS STATE FIRE	E MARSHAL'S OFFICE
RECEIPT OF DISPOSAL OF	UNDERGROUND STEEL STORAG	E TANK	
NAME AND ADDRESS	A. W. MARTIN, INC.	E TANK	<u> </u>
NAME AND ADDRESS	A. W. MARTIN, INC.	E TANK	<u>\$</u>
NAME AND ADDRESS OF APPROVED TANK YARD	A. W. MARTIN, INC. 1980 SMAY/MUT AVE. NEW BEDYORD, MA UZ/46	E TANK	
NAME AND ADDRESS OF APPROVED TANK YARD APPROVED TANK YARD NO.	A. W. MARTIN, INC. 1980 SMAY/MUT AVE. NEW BEDYORD, MA UZ/46		
NAME AND ADDRESS OF APPROVED TANK YARD APPROVED TANK YARD NO. Tank Yard Ledger 502 CM I certify under penalty of ladelivered to this "approved to this "approved to Regulation 502 CMR 3.00 Provi A valid permit was issued by this tank to this yard. Name and official title of approved to the stank to this yard. Name and official title of approved to the stank to this yard. Name and official title of approved to the stank to this yard.	A. W. MARTIN, INC. 1980 SNAVMUT AVE. 1980 SNAVMUT	e underground steel storage rand or partnership \(\frac{1}{2} \)	tion varie

Department of Public Safety-Division of Fire Prevention

APPLICATION FOR PERMIT FOR REMOVAL AND TRANSPORTATION TO APPROVED TANK YARD

3/12 1989

To: HEAD OF FIRE DEPARTMENT

C.82 S.40 M.G.L.
DIG SAFE NUMBER

In accordance with the provisions Section 38A Application is hereby	of Chapter 148, G.L. made by Ontental (Name of Perso	as provided	l in Corporation)	h
			Fairhaven	

For permission to remove and transport underground steel storage tank(s) from

4 - HOOGENE TAINES

Street address (city or town)

Department of Public Safety-Division of Fire Prevention

APPLICATION FOR PERMIT FOR REMOVAL AND TRANSPORTATION TO APPROVED TANK YARD

3/12 1989 (Date)

To: HEAD OF FIRE DEPARTMENT

In accordance with the provisions of Chapter 148, G.L. as provided in Section 38A Application is hereby made by Interface from and Janh (Name of Person, Firm of Corporation)

Whater Sur Farhwer mass

For permission to remove and transport underground steel storage tank(s) from

4- 4000 GAC TANKS

Street address (city or town)

FDID# 23052 to approved Tank Yard# # martin Saling 2010)

State clearly type of inert gas used in

Co2 don in

美 **>**∤-(3) BUILDING $\frac{5}{2}$ SLAND ROUTE PIESEL

LEAK DETECTOR TEST RESULTS

st Site Name & Address:		Testing Com	ipany	
Eagle Gas				
131 Main St.		PO BOX 67		-
Carver, MA 02330	MANVILLE RI 02838			-
Test Date: 5/28/03				
	Product	Product	Product	Product
Product	Regular	Premium	Diesel	
Pump Manufacturer	Red Jacket	Red Jacket	Red Jacket	, , , , , , , , , , , , , , , , , , ,
Leak Dectector Model	FXV	FXV	FXV	
Simulated Leak Test	PASS	PASS	PASS	
L.D. Activated Flow < 2.0 G.P.M.	YES	YES	YES	
Conclusion (PASS or FAIL)	PASS	PASS	PASS	
Leak Detectors	PASS	PASS	PASS	
				, - -
		<u>.</u> !		
	··	- <u>-</u> .		
sults / Comments: PASS				
	 ,			
st Conducted By: Bryan Courney	/er	Date:	5/28/03	

NEXTEST

P.O. BOX 67, MANVILLE, RI 02838 (401) 658-5021 or (800) 858-9128

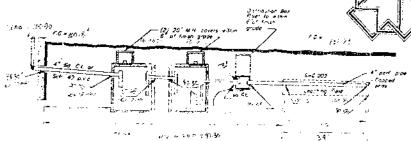
GALVANIC ANODE CATHODIC PROTECTION INSPECTION REPORT

Eagle Gas 131 Main St. Carver, MA 02330

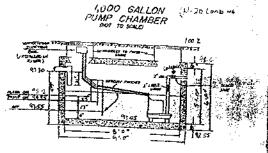
Vent	EAGLE GAS	S				
MPD MPD MPD D D OO Interstitial Monitor Fill Stage I Tank Monitor Main St.						
	Tank	Electrolyte Potentials (mV)				
TANK	TANK	rectionare Lorentistis (111A)				
Regular-1 (R-1)	- 1.00 mV PASS					
Regular-2 (R-2)	- 1.05 mV PASS					
Premium (P)	-1.00 mV PASS					
Diesel (D)	-1.15 mV PASS					

Potentials Recorded By:	Byn Coursey
Date:	5-28-03

Department of Public Safety-Division of Fire Prevention


APPLICATION FOR PERMIT FOR REMOVAL AND TRANSPORTATION TO APPROVED TANK YARD

			_	3/12 1989
To: HEAD OF FIRE DEPARTMENT AND TO		Ī	_	M.G.L. FE NUMBER 1299
			Start Date	2.17 87
In accordance with the prosection 38A Application is	s hereby made by () (Nam	e of Person, Fir	m of Corpo	
	- Zy Add	ress E	ne 5	taskaven masa
For permission to remove	and transport unde	rground steel	storage ta	nk(s) from
4-45006ACV	Stree	t address (city	arver.	mass
FDID#23652 to app	roved Tank Yard#	# martin	Salia	20101
State clearly type of inert gas used in steel storage tank	Туре			•
Name of Person, Firm, Cor	poration disposing t	ank Interests	to Run	o and Dunk
Date (ssued - rejected 3 Date of expiration 3	5/75 1957 77:30 198påid/due	By: Signature	Beauty of Applica	and nt
Th	e Commonwealt!	of Massac	husetts	
DEPARTMENT O	F PUBLIC SAFETY	ם אסופועום -	F FIRE PE	_
	PERM	IT		mken 12 19 8 g
	TRANSPORTATION TO			DIG SAFE NUMBER
In accordance with the provi Section 38A this permit is g Name: Full name of p	sions of Chapter 14 ranted to function or Corp erson, firm or Corp	Jane	ded in	2912299 Start Date
To transport under	ground steel storage	e tank(s)		
State clearly type of inert gas used in	to Approved tank		01	
stee! storage tank	steel tank: meth	n le	.,	
FDID# 23053 Fee paid \$	Name and address of disposing tank Location to which be transported	tentate from	o and I	anh
This permit will expire 3/	Approx Sign	ved tank yard# ture oftofficial lead of Fire De	al grantino	permit(TITLE)



1000 Gal to

Precast Concrete Septic Tank

Section Thru Systom

tiers to the lines per be; BOXA 1 LOP KO 48 CZOP CAL PERSACE THE ROBBERT OF HER LANGUE SCHOOL SCHOOL 541 ... 16.78 ... 145"

RECEIPED I LAND CORNERS DOWN HER OIL Strue Compa 300 mo x 120 Francisco Santo 11.25つよっ46年 メ

1944 - E B. 1844 1) 1) mises send 1/4

- I Sometime to A Law on the Lot \$ 2.1 (MISTALLES IN HOUSE / SPEACE)
- 3) " warry on Box
- do to not be sometimes to be Continued
- 5) (1) 2 max

w. EC

1 10000

		THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NAMED IN COLUMN TRANSPORT NAMED IN COLUMN	or to State	31.67/6		
		Proposed Flow	Line Grades	As Built	* Grades	•
e	6) W AT	FOLMONTON				
	e wy wa	S SEPTIC TANK	추시 <u>구의</u>			
	in an our	OF SEPTIC TANK	112_45			
	INV. MTG	DISTRIBUTION BOX	45 42		_	
	Her OU:	סר מוליפוש אסויט איינים אס	, 77.5			
	MV: 47 :	BEGINNING OF TICLS	The Co			
	INV AT	END OF LEACHING THE	0 100.00			
		OF STONE	34.40			
· .	ми се п	9 1	<u>454</u> 7.F	 2	 TP	3
	- 4 /	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	1	g J	
-	Present i Igent Igil Evalu	piγen i€ Rote Of <u>35</u> Juring Tests Of i==		<u>265</u>	Bench Torrison Policy House	NA II A ≅a x-j-
	AU DA. REG	DEST PAGE AND	2. 95 	9 30 me.asa		
	Date	De:	scription	500	zen Ges-gr	See. 5
,	2/2 /3	PERAN DE	Sen Trial Sy		1-10-10-1	Year V
	!	·				11°2≤; 4 1

Think In Savida y Sychol PREPARED FOR: 1/42 2 2/2/4-SCALE: <u> 720</u> DATE TUNE 3" 1995

WEBBY ENGINEERING ASSOCIATES, INC. Civil Engineers & Land Surveyors 180 County Road - Plympton, MA. (781) 585-1164

Prof. Land Surveyor

nd Septic Tanks & Pump Chambers

of the structurally sound and to withstand the

in be waterlight

ili de precast canciste

rens of septembers shall imperient a quality idada 5-1977. 95 Tanks shall be enthossed amboused with a set a list rejected

h de otteksiuw, ur inspection ong meintenn Visitings shall de útoled prectly upon, ned the traks which may interfer with per-occese inspection, and pumping accepted

et lees shall be at cast war, schedule et ned equal

sprake estable. We not east three (3) for minimizers. Manholes shall be in the first territorial manholes shall be in the first compact it to sent each machable shall be the access the stellar machable shall be the access the intract contraction. System designs in stream shall be made accessible of any size of 1000000 or minimizers shall be made accessible of any capt provide course our interrupt provides and interrupt provides and any shall be shall be shall be settled to the shall be shall be settled to provide any shall be settled to provide underlying the shall be settled to the shall be shall be settled to the shall be shall b

e installed true to grade on a level stable een mechanically compacted, and an which shed stare has bade placed to ensure sevent setting. have a minimum of time inches of cover.

If home a minimum of other Inches of cover, of acted fees shall be installed to the grade develops. The fees shall selected a minimum fees fine of the spells there and the most shall select the select them and the select se machines Cross-sectionary the boffles shall see such the select the contest fees such the select select the contesting or an existing saver line verify sever line in group to all of the select select the select in group to all of the select select select selec

DESIGN CRITERIA

of ins system of a not blow for the use of tectors.

fare shall be inspected and cleaned and

show on the transfer of months of when greater is 25% of the effective depth of the

of the system conforms with the Richard Richard Review to proposed suntary system.

table were 20 0 ion, so obsorblich system

es shall be focuted upon, above, or within scring feld area. The reserve area (190% Chadered to be the sums us the leach

C' Water dumponents, including the septicition box or dusting chamber one soli settlem, shoulde installed no more than \$6" grade.

eaching Field Area

ns show de teue to line and grade

of he PVC SON 49

c's) sact have a minimum dismeter of 4 m vate of 0.01.(0.000 **a** eaching here)

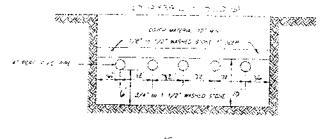
material including top soil and sub-soil and sub-soil and sub-soil and specifical BGS, and a distance of the designated leaching.

's stant be redicated with circle sound, Equipments of \$10 CMR 15.255/3)

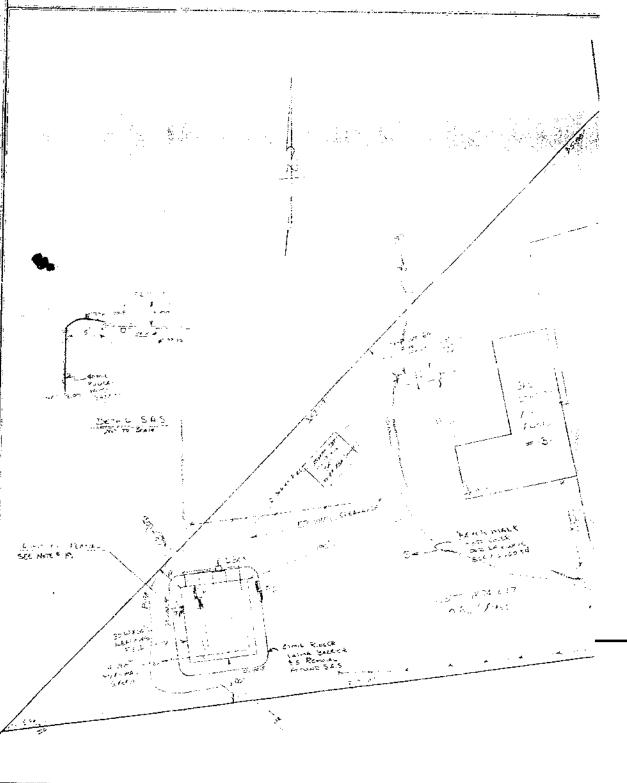
o charted stone shall be clean of fines to be maded to meet the requirement of 47(1).

spection Schedule

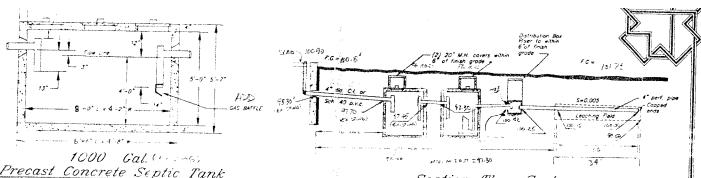
board of health certification, confirmation installation is majured. The installation is approved of the engineer and the loop in representative at the completion of each 3 stages.


nent of the clean backful

than of the system with all companents of for inspection and proporation of with


Utility Notes

of utilities is approximate only Dig. Sale orimals authorities shall be notified to collings.

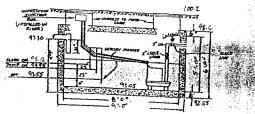


Section Thru Leaching Field

Precast Concrete Septic Tank

Section Thru System

FOT TO SCALE	4			1101 a Dys	LCIIC			
			No	t To Scale				
			Proposed Flow	Line Grades	" As Built "	C		
	وعو	506) W. AT		99.34	As Baut	Grades	-	
1,000 GALLON (H-20 LOADING)	11	HOWE) INV. INT		9770		-		
PUMP CHAMBER	8 111		T OF SEPTIC TANK	97 4-5		_		
100-2			O DISTRIBUTION BOX	7 00 dZ		-		
The Line Annual Land Control of Land Land Land Land Land Land Land Land		INV. OU	T OF DISTRIBUTION BO	x /5075		-		
(MONEGO M ST 1986		MV. AT	BEGINING OF FIELD	100.05		-		
47.30		INV. AT	END OF LEACHING FIEL	0 195.00		-		
Manay received y country 1 manay		P OTTON	OF STONE	39.60		_ 1	1	
	75 4	WATER I	ABLE	95.4				
er 9355 5°						386		3 2. "
		7	P 1	T C 0				
8:00 18255			1.00	T.P. 2		T.P.	<i>3</i> :	
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		नेहे.व %ा इसर		<u>محموم مح</u>			-	
CORDS TO COL I DOSC PER DAY	I	41.7 A	7 2 24	$=$ A^{-1}	7. 4. I	A	1	
3.0 K4.7 - 2.78 x 7.48 = 25.77, GALDERWEN		44 D		70 FK				
			15,50 X	1000 B 35 10 %		<u> </u>		
116 \$.16 Sulpre for = 19 60 350 0 349 SAC FEEDO	· · ·	1 1	154	F (x, x)	1			
349 = 16.78" = 1.40"			502	2.5	1		-	
	1	% F	10	E 5100	1		į	
Zandanie Cole in a			RS	1				
BONNARY CALL JOBS GALLON POWE CHER	ore.	0.7 3	2 0 %	1.	1			
	i l	-35 E		ise time	[~ ~ ~		
GROUND COVER = 90 x 5.0 x 1 x 120 = 5400	.							
5/4 274 - TANK 208 647 - 16 593		22425		SOIL LO	GS -			
219955 > 16.848 SK		"			A STATE OF S			
		SEVE EN						
		Present :	5€ Rote Of <u>35</u> During Tests Oi	Minutes/Inch - n = 5/3/128		Bench A	Mark_	
Punt & Corres	I	- Agent:	T. 6. 20 L	The second				
1) (1) myer's semd \$/ohp		Soil Evalu	uotor: <u>Fro</u>	<u> </u>		€ cev.		0.34
Z"DISTREET ILANE 115 INT	- 2	30.47.11.10	GAL EXISTING 1					
			ELLIC SANSIE O		2.	34 Files		
5) 1) 5 mpch France with Bell & LIGHT		A// 1	WASH OF ASSOCIATION	2			2 - 7	
(MISTALLETO IN HOUSE/GARAGE)		RE	OURED GPD	23 go/	34 /	200		
3) (1) WESTERFORD JUNCTION BOX		LEA (F)	ACHING AREA PROVIDE	7 00/ 7 00/ 0 - (000 1 > (000 2 00 > (000)	υν παγακή≠Ω Ε (3355×1	muni.		
*				200 you - day 95	V576 A	besevi		
4.) (3) MEI CURY SUUTHY LEVEL CONTROLS!	/55	ue Dote	n.			T		P
(S) (S) だりねっぺ (E)	1			scription Sky रुक्ष्य Syste	Oroun		Check	Re
Some to concer value			PEPAIR SE	SAN AND SUSTE	m /xu	12000	tu	X
and the second s						+		
						++		
						1		
) 			December			-	ACCES TO THE PARTY OF	
f v.	. 1			∑^ Sunitury	System			


TOWN: (ALJEE, MASS. LOT NO.: M742.17 LOCATION: PREPARED FOR: NATE BASES 1" = 20' DATE: JUNE 27, 1998

WEBBY ENGINEERING ASSOCIATES, INC. Civil Engineers & Land Surveyors 180 County Road - Plympton, MA. (781) 585-1164

W: ///>

APPENDIX E ENVIRONMENTAL FIRSTSEARCH™ REPORT

FirstSearch Technology Corporation

Environmental FirstSearch™ Report

_TARGET PROPERTY:

131 MAIN ST

CARVER MA 02330

Job Number: 616

PREPARED FOR:

Decoulos & Company
3 Electronics Avenue
Danvers, MA 01923

05-24-04

Tel: (781) 320-3720

Fax: (781) 320-3715

Environmental FirstSearch is a registered trademark of FirstSearch Technology Corporation. All rights reserved,

Environmental FirstSearch Search Summary Report

Target Site: 131 MAIN ST

CARVER MA 02330

FirstSearch Summary

Database	Sel	Updated	Radius	Site	1/8	1/4	1/2	1/2 >	ZIP	TOTALS
NPL	Y	04-08-04	1.00	0	0	0	0	0	0	0
CERCLIS	Y	02-09-04	0.50	0	0	0	0	_	0	0
RCRA TSD	Y	02-09-04	0.50	0	0	0	0	-	0	Õ
RCRA COR	Y	02-09-04	1.00	0	0	0	0	0	0	0
RCRA GEN	Y	02-09-04	0.25	0	0	0	-	_	0	0
RCRA NLR	N	02-09-04	0.25	-	-	_	_	-	-	-
ERNS	Y	12-31-03	0.25	0	0	0	_	-	0	0
NPDES	N	01-26-04	0.25	-	-	_	-	_	-	-
FINDS	N	01-30-04	0.25	-	-	_	-	-	-	_
TRIS	N	07-16-98	0.25	-	-	-	_	-	_	_
State Sites	Y	03-12-04	1.00	1	2	0	0	Ī	0	4
Spills-1990	Y	03-12-04	0.50	3	2	0	i	_	1	7
Spills-1980	N	03-10-98	0.25	-	_	_	-	-	_	-
SWL	Y	01-02-04	0.50	0	0	0	0	_	0	0
Permits	N	NA	0.25	-	-	_	_	-	-	
Other	N	NA	0.25	-	-	-	_	_	_	_
REG UST/AST	Y	03-05-04	0.25	i	0	1	_	_	1	3
Leaking UST	Y	03-12-04	0.50	2	0	0	0	_	1	3
State Wells	N	11-25-03	0.50	_	_	-	-	_	_	-
Aquifers	N	12-15-03	0.50	_	_	_	_	_	_	_
ACEC	N	07-15-03	0.50	_	_	-	_	_	-	_
Wetlands	N	11-20-00	0.50	_	_	-	_	_	-	_
Floodplains	N	05-13-98	0.50	-	_	_	_	-	_	
Receptors	Y	01-01-95	0.50	0	0	0	0	_	0	0
Nuclear Permits	N	04-30-99	0.50	_	-	-	-	_	-	-
Historic/Landmark	N	05-19-03	0.50	_	_	_	_	-	_	_
Federal Land Use	N	06-17-98	0.50	-	_	_		_	_	-
Federal Wells	N	05-19-03	0.50	-	-	-	-	_	_	_
Releases(Air/Water)	N	12-31-03	0.25	-	-	_	-	-	-	-
TOTALS -				7	4	I	ì	ì	3	17

Notice of Disclaimer

Due to the limitations, constraints, inaccuracies and incompleteness of government information and computer mapping data currently available to DataMap Technology Corp., certain conventions have been utilized in preparing the locations of all federal, state and local agency sites residing in DataMap Technology Corp.'s databases. All EPA NPL and state landfill sites are depicted by a rectangle approximating their location and size. The boundaries of the rectangles represent the eastern and western most longitudes; the northern and southern most latitudes. As such, the mapped areas may exceed the actual areas and do not represent the actual boundaries of these properties. All other sites are depicted by a point representing their approximate address location and make no attempt to represent the actual areas of the associated property. Actual boundaries and locations of individual properties can be found in the files residing at the agency responsible for such information.

Waiver of Liability

Although DataMap Technology Corp. uses its best efforts to research the actual location of each site, DataMap Technology Corp. does not and can not warrant the accuracy of these sites with regard to exact location and size. All authorized users of DataMap Technology Corp.'s services proceeding are signifying an understanding of DataMap Technology Corp.'s searching and mapping conventions, and agree to waive any and all liability claims associated with search and map results showing incomplete and or inaccurate site locations.

Environmental FirstSearch Site Information Report

Request Date:

05-24-04

Search Type: COORD

Requestor Name:

James J. Decoulos

Job Number: 616

Standard: ASTM

FILTERED REPORT

Target Address:

131 MAIN ST CARVER MA 02330

Demographics

Sites:

17

Non-Geocoded: 3

Population:

1239

Radon:

0.1 - 3.9 PCI/L

Site Location

	Degrees (Decimal)	Degrees (Min/Sec)	<u>UTMs</u>
I amade J.	70.744140		

Longitude:

-70.766162

-70:45:58

Easting:

353460.285

Latitude:

41.884684

41:53:5

Northing:

4638267.732

Zone:

19

Comment

Comment:

Additional Requests/Services

Adjacent ZIP Codes: 0.00 Mile(s)

Services:

ZIP		<u>_</u>		
Code	City Name	ST	Dist/Dir	Sel

	Requested?	<u>Date</u>
Sanborns	N	
Aerial Photographs	N	
Topo Maps (hardcopy)	N	
City Directories	N	
Title Search	N	
Municipal Reports	N	
Online Topo Map	N	

Environmental FirstSearch Selected Sites Summary Report

JOB: 616

TARGET SITE: 131 MAIN ST

CARVER MA 02330

TOTAL: 17 GEOCODED: 14 NON GEOCODED: 3 SELECTED: 17

ΗD	DD /r	C'A. N. /TD/C			
עו	DB Type	Site Name/ID/Status	Address	Dist/Dir_	Map ID
I	STATE	CARMICHAELS MOBIL STATION 4-0000612/TIER 1B	MAIN ST (RTE 58) CARVER MA 02330	0.08 SE	1
2	STATE	NO LOCATION AID 4-0012848/THER ID	132 MAIN ST CARVER MA 02330	0.09 SE	2
3	STATE	RTE 58 4-0012615/RAO	67 MAIN ST CARVER MA 02330	0.71 NW	3
4	STATE	RTE 58 4-0013333/TIER 2	131 MAIN ST CARVER MA 02330	0.09 NW	4
5	SPILLS	CARMICHAELS MOBIL STATION 4-0000612/THERIB	MAIN ST (RTE 58) CARVER MA 02330	0.08 SE	1
6	SPILLS	INTERSECTION OF MALDOW & MAIN ST 4-0017825/UNCLSS	131 MAIN ST CARVER MA 02330	0.09 NW	4
7	SPILLS	NO LOCATION AID 4-0012848/TIERID	132 MAIN ST CARVER MA 02330	0.09 SE	2
8	SPILLS	NO LOCATION AID 4-0016867/RAO	5 BISBEE DR CARVER MA 02330	0.46 NE	5
9	SPILLS	RTE 58 4-0013333/TIERII	131 MAIN ST CARVER MA 02330	0.09 NW	4
10	SPILLS	RTE 58 - EAGLE GAS STATION 4-0017582 TIERID	131 MAIN ST CARVER MA 02330	0.09 NW	4
11	UST	EAGLE GAS INC 0-013175	131 MAIN ST CARVER MA 02330	0.09 NW	4
12	UST	THALIA F. CARMICHAEL 0-013172/PRIVATE	MAIN STREET CARVER MA 02330	0.19 NW	6
13	LUST	RTE 58 4-0013333/TIERII	131 MAIN ST CARVER MA 02330	0.09 NW	4
14	LUST	RTE 58 - EAGLE GAS STATION 4-0017582/TIERID	131 MAIN ST CARVER MA 02330	0.09 NW	4

Environmental FirstSearch Selected Sites Summary Report

TARGET SITE:

131 MAIN ST CARVER MA 02330

JOB: 616

TOT	AL: 17	GEOCODED: 14	NON GEOCODED: 3	SELECTED: 17
ID _	DB Type	Site Name/ID/Status	Address	Dist/Dir Map ID
15	SPILLS	NO LOCATION AID 4-0011138/UST	PLYMOUTH & NORTH MAIN ST CARVER MA 02330	NON GC
16	UST	TOWN OF CARVER 0-013168	MAIN ST CARVER MA 02330	NON GC
17	LUST	TOMS TEXACO STATION 4-0000194/RAO	NORTH MAIN STREET RTE 58 AND 4 CARVER MA 02330	NON GC

Environmental FirstSearch Normalized Summary Report

Site Name Address	Dist/Dir	Map ID	TOTAL	Databases —
CARMICHAELS MOBIL STATION				
MAIN ST (RTE 58)	0.08 SE	-	7	
CARVER MA 02330			*.	のようでは、「大きな」とは、「大きな」とは、「大きな」とは、「大きな」とは、「大きな」とは、「大きな」とは、「大きな」とは、「大きな」とは、「大きな」とは、「大きな」とは、「大きな」とは、「大きな」と
INTERSECTION OF MALDOW & M				PRESENTANT SECTION OF THE SECTION OF
131 MAIN ST	0.09 NW	4	F-	Section Control of Con
CARVER MA 02330			·- <u>-</u>	この表示に対象が、他のできる。 「「「「「「「「「」」」」 「「「」」 「「」 「「」 「」 「」 「」 「」
NO LOCATION AID				
132 MAIN ST	0.09 SE	7	2	
CARVER MA 02330			v.·-[_	
THALIA F. CARMICHAEL			A6301	
MAIN STREET	WN 61.0	9		のでは、「「「「「」」」では、「「」」では、「」では、「
CARVER MA 02330			441	
NO LOCATION AID			/ -	
5 BISBEE DR	0.46 NE	w		The state of the s
CARVER MA 02330				
RTH 58				
67 MAIN ST	0.71 NW	3	<u> </u>	Control of the Contro
CARVER MA 02330			<u>'31 </u>	
			:1	THE SECURITY WAS DESCRIBED TO THE WAS SECURITY OF THE SECURITY
	TOTALS		4	9 4
			<u> </u>	

			Pa	
RE - Releases				
NU - Nuclear Permits	HS - Historic Sites	FL - Federal I and Use		
AC - ACEC	WE - Wetlands	FP - Floodplains		
US . UST	LS - LUST	SMd - Md	A	
80 - 80's Spills US - UST	LF - Landfills	PM - Permits	OT Other	
FN - FINDS	TR - TRIS	ST - State Sites	SP - 90's Snills	
RG - RCRA GEN FN - FINDS	RN - RCRA NLR TR - TRIS	ER - ERNS	NS - NPDES	
		RT - RCRA TSD	RC - RCRA COR	

TARGET SITE: 131 MAIN ST JOB: 616

CARVER MA 02330 -- -- -- --STATE SITE : -----SEARCH ID: 1 DIST/DIR: 0.08 SE MAP ID: j CARMICHAELS MOBIL STATION NAME: REV: 3/12/04 ADDRESS: MAIN ST (RTE 58) IDt; 4-0000612 CARVER MA 02330 ID2: STATUS: TIER 1B CONTACT: PHONE: SITE INFORMATION LTBI: 1/15/1989 CONFIRMED: 4/15/1990 DELETED: REMOVED: CATEGORY: NONE 21E STATUS: TIERIB DATE: 1/15/1989 21E DATE: 2/21/1997 PHASE: PHASE V HAZMAT TYPE: HAZARDOUS MATERIAL RAO CLASS: LOCATION TYPE: GASSTATION, SOURCE: SUCTN LINE; SITE DESCRIPTION: GAS STATION; RELEASE TO SOIL; GROUNDWATER RELEASE; OTHER CONTAMINATION: OVERFILL & LEAKING SUCTION LINE OTHER RELEASES: BTEX COMPOUNDS OTHER PROBLEMS: OTHER TYPE OF SITE: **CHEMICALS** BTEX SITE ACTIONS TS DATE: 9/4/1998 AUL RESTRICTION: LSP: MICHAEL PIERDINOCK RA STATUS: STATUS REPORT RECEIVED RAS TYPE; IMMEDIATE RESPONSE ACTION RAO CLASS: TS DATE: 3/20/1996 AUL RESTRICTION: LSP: MICHAEL PIERDINOCK TRANSMITTAL RECEIVED RA STATUS: RAS TYPE: TIER2EXT RAO CLASS: TS DATE: 3/13/1995 AUL RESTRICTION: LSP: STEVEN MIGRIDICHIAN RA STATUS: RAS TYPE: TIER2EXT - Continued on next page -

TARGET SITE:

131 MAIN ST

CARVER MA 02330

JOB: 616

STATE SITE

SEARCH ID:

DIST/DIR:

0.08 SE

MAP ID:

NAME:

CARMICHAELS MOBIL STATION

4/22/1997

ADDRESS: MAIN ST (RTE 58)

CARVER MA 02330

REV: IDI:

3/12/04

ID2:

4-0000612

CONTACT;

STATUS: PHONE:

TIER 1B

RAO CLASS:

TS DATE:

AUL RESTRICTION:

LSP:

RA STATUS: RAS TYPE:

MICHAEL PIERDINOCK

WRITTEN PLAN RECEIVED IMMEDIATE RESPONSE ACTION

RAO CLASS:

TS DATE:

2/21/1997

AUL RESTRICTION:

LSP:

RA STATUS: RAS TYPE: RAO CLASS:

MICHAEL PIERDINOCK TRANSMITTAL RECEIVED TIER CLASSIFICATION

TS DATE:

2/21/1997

AUL RESTRICTION:

LSP;

MICHAEL PIERDINOCK

RA STATUS: RAS TYPE:

COMPLETION STATEMENT RECEIVED PHASE 1

RAO CLASS:

TS DATE:

3/9/1999

AUL RESTRICTION: LSP:

RA STATUS:

MICHAEL PIERDINOCK STATUS REPORT RECEIVED IMMEDIATE RESPONSE ACTION

RAS TYPE:

RAO CLASS:

2/26/2002

ACT USE LIMITATION:

MICHAEL WEBS

ACT STATUS: ACT TYPE:

ACT DATE:

IMRCD PHASE 5

RAO TYPE:

- Continued on next page -

TARGET SITE:

131 MAIN ST

CARVER MA 02330

·- .. —

JOB: 616

STATE SITE

SEARCH ID: 1

DIST/DIR:

0.08 SE

MAP ID:

NAME:

CARMICHAELS MOBIL STATION

ADDRESS: MAIN ST (RTE 58) CARVER MA 02330 REV: ID1:

3/12/04 4-0000612

ID2:

STATUS: PHONE:

TIER 1B

CONTACT:

ACT USE LIMITATION:

LSP:

MICHAEL WEBS

ACT STATUS:

STRCVD

ACT TYPE;

STATUS REPORT RECEIVED

RAO TYPE:

ACT DATE:

9/25/1989

SOW

ACT USE LIMITATION:

LSP: ACT STATUS:

ACT TYPE:

SCOPE OF WORK RECEIVED

RAO TYPE:

ACT DATE: 8/16/1999

ACT USE LIMITATION:

LSP:

ACT STATUS:

PEREFF

ACT TYPE:

PERMIT EFFECTIVE DATE

RAO TYPE:

ACT DATE: ACT USE LIMITATION:

LSP:

ACT STATUS:

CSRCVD

2/21/1997

ACT TYPE:

COMPLETION STATEMENT RECEIVED

RAO TYPE:

TARGET SITE:

131 MAIN ST

CARVER MA 02330

JOB: 616

STATE SITE

SEARCH ID: 2

DIST/DIR:

0.09 SE

MAP ID:

2

NAME:

NO LOCATION AID

ADDRESS: 132 MAIN ST

CARVER MA 02330

REV: IDI:

3/12/04 4-0012848

ID2:

TIER 1D

PHONE:

STATUS:

SITE INFORMATION

CATEGORY:

CONTACT:

TWO HR

21E STATUS: 21E DATE:

TIERID 2/24/1998

DATE: PHASE:

2/14/1997

HAZMAT TYPE:

HAZARDOUS MATERIAL

RAO CLASS:

LOCATION TYPE:

SOURCE:

UNKNOWN:

SITE DESCRIPTION:

CHEMICALS

BENZENE 14 PPB

SITE ACTIONS

ACT DATE:

2/14/1997

ACT USE LIMITATION:

LSP:

ACT STATUS:

ASSESS

ACT TYPE:

IRA ASSESSMENT ONLY

RAO TYPE:

ACT DATE:

2/14/1997

ACT USE LIMITATION:

ACT STATUS: ACT TYPE:

REPORT

REPORTABLE RELEASE UNDER MGL 2

RAO TYPE:

131 MAIN ST TARGET SITE:

CARVER MA 02330

JOB: 616

STATE SITE

. ---

_...-SEARCH ID: 3

DIST/DIR:

0.71 NW

MAP ID:

3

NAME:

.. .--

RTE 58 ADDRESS: 67 MAIN ST

CARVER MA 02330

REV: ID1:

1/29/01 4-0012615

ID2:

STATUS: RAO

CONTACT:

PHONE:

SITE INFORMATION

LTBI: DELETED: CONFIRMED: REMOVED:

CATEGORY:

TWO HR

21E STATUS:

RAO

DATE: PHASE: 11/2/96 PHASE II 21E DATE: HAZMAT TYPE:

6/23/98 OIL.

RAO CLASS:

TO BACKROUND

A2 - A PERMANENT SOLUTION HAS BEEN ACHIEVED; CONTAMINATION HAS NOT BEEN REDUCED

LOCATION TYPE;

RESIDNTIAL,

SOURCE:

SITE DESCRIPTION:

AST;

SITE ACTIONS

TS DATE:

19971107 00:00:00

AUL RESTRICTION:

LSP: RA STATUS: STEVEN MIGRIDICHIAN TRANSMITTAL RECEIVED TCLASS: TIER CLASSIFICATION

RAS TYPE: RAO CLASS:

TS DATE:

19971107 00:00:00

AUL RESTRICTION:

LSP:

RA STATUS:

RELATED TO A TRANSITION SITE (NOT TIER CLASSIFIED)

RAS TYPE: RAO CLASS: FEND

ACT DATE:

06/23/1998

ACT USE LIMITATION: LSP:

NONE

ACT STATUS:

STEVEN MIGRIDICHIAN RAO STATEMENT RECEIVED

ACT TYPE:

RAO: RESPONSE ACTION OUTCOME.

RAO TYPE:

TO BACKROUND

A2 - A PERMANENT SOLUTION HAS BEEN ACHIEVED: CONTAMINATION HAS NOT BEEN REDUCED

ACT DATE:

11/07/1997

ACT USE LIMITATION:

LSP:

STEVEN MIGRIDICHIAN COMPLETION STATEMENT RECEIVED

ACT STATUS: ACT TYPE:

PHASEI: PHASE I

- Continued on next page -

TARGET SITE: 131 MAIN ST

CARVER MA 02330

JOB: 616

STATE SITE

_____ SEARCH ID: 3

DIST/DIR:

0.71 NW

MAP ID:

NAME:

RTE 58 ADDRESS: 67 MAIN ST

CARVER MA 02330

REV: ID1:

1/29/01 4-0012615

ID2:

RAO

CONTACT:

STATUS: PHONE:

RAO TYPE:

ACT DATE:

11/07/1997

ACT USE LIMITATION:

LSP: ACT STATUS: STEVEN MIGRIDICHIAN TIER 2 CLASSIFICATION TCLASS: TIER CLASSIFICATION

ACT TYPE: RAO TYPE:

ACT DATE:

06/23/1998

ACT USE LIMITATION:

LSP:

STEVEN MIGRIDICHIAN

ACT STATUS: ACT TYPE:

COMPLETION STATEMENT RECEIVED IRA: IMMEDIATE RESPONSE ACTION

RAO TYPE;

TARGET SITE:

131 MAIN ST

CARVER MA 02330

616 JOB:

STATE SITE

SEARCH ID: 4

DIST/DIR:

0.09 NW

MAP ID:

4

NAME: ADDRESS: 131 MAIN ST

RTE 58

CARVER MA 02330

REV: ID1:

3/12/04 4-0013333

ID2: STATUS:

TIER 2

CONTACT:

PHONE:

SITE INFORMATION

CATEGORY:

72 HR 9/8/1997 21E STATUS: 21E DATE:

THERIF 3/18/1999

DATE: PHASE:

PHASE II

HAZMAT TYPE:

OIL AND HAZARDOUS MATERIAL

RAO CLASS:

LOCATION TYPE:

SOURCE:

COMMERCIAL,

UNKNOWN; UST;

SITE DESCRIPTION:

CHEMICALS

BENZENE 93 PPB

UNKNOWN CHEMICAL OF TYPE - HAZARDOUS MATERIAL 4000 PPB

TOTAL PETROLEUM HYDROCARBONS (TPH) 1.3 PPM

SITE ACTIONS

ACT DATE:

1/26/1999

ACT USE LIMITATION:

NONE

LSP:

BARTLETT PAU STMRET

ACT STATUS: ACT TYPE:

SUBMITTAL RETRACTED

RAO TYPE:

C - A TEMPORARY SOLUTION, WHIC

ACT DATE:

3/18/1999

ACT USE LIMITATION: LSP:

THEODORE KAE

ACT STATUS:

ACT TYPE:

TIER 2 CLASSIFICATION

RAO TYPE:

ACT DATE:

9/8/1997

TIERII

ACT USE LIMITATION:

LSP:

BARTLETT PAU

ACT STATUS:

REPORT

ACT TYPE:

REPORTABLE RELEASE UNDER MGL 2

RAO TYPE:

ACT DATE:

3/18/1999

ACT USE LIMITATION:

LSP:

THEODORE KAE

ACT STATUS:

CSRCVD

- Continued on next page -

TARGET SITE:

131 MAIN ST

CARVER MA 02330

JOB: 616

STATE SITE .<u>..</u>. _·: SEARCH ID: 4 DIST/DIR: 0.09 NW MAP ID: NAME: RTE 58 REV: 3/12/04 ADDRESS: 131 MAIN ST ID1; 4-0013333 CARVER MA 02330 ID2: TIER 2 STATUS: PHONE: CONTACT: ACT TYPE: COMPLETION STATEMENT RECEIVED RAO TYPE:

TARGET SITE:

131 MAIN ST

CARVER MA 02330

JOB: 616

STATE SPILLS SITE

Fig. 51 12

SEARCH ID: 5

DIST/DIR:

 $0.08~\mathrm{SE}$

MAP ID:

NAME:

CARMICHAELS MOBIL STATION

ADDRESS: MAIN ST (RTE 58)

CARVER MA 02330

REV: IDI:

12/19/03 4-0000612

ID2:

TIERIB

CONTACT:

STATUS:

PHONE:

SITE INFORMATION

STATUS: TIER 1B - A site/release receiving an NRS score less than 550 and equal to or greater than 450. These sites/releases also require a permit, but response actions may be performed under the supervision of a License Site Professional (LSP) without prior DEP approval.

1/15/1989

CONFIRMED: REMOVED:

4/15/1990

DELETED:

CATEGORY:

NONE

1/15/1989

21E STATUS:

TIER 1B

DATE: PHASE: PHASE V

21E DATE:

2/21/1997

HAZMAT TYPE:

HAZARDOUS MATERIAL

RAO CLASS:

LOCATION TYPE:

GASSTATION.

SOURCE:

SUCTN LINE:

SITE DESCRIPTION:

GROUNDWATER RELEASE: GAS STATION; RELEASE TO SOIL;

OTHER CONTAMINATION:

OTHER RELEASES:

OTHER PROBLEMS: OTHER TYPE OF SITE: OVERFILL & LEAKING SUCTION LINE

BTEX COMPOUNDS

CHEMICALS

BTEX

SITE ACTIONS

TS DATE:

3/13/1995

AUL RESTRICTION: LSP:

STEVEN MIGRIDICHIAN

RA STATUS:

RAS TYPE:

TIER2EXT

RAO CLASS:

TS DATE:

3/9/1999

AUL RESTRICTION:

LSP:

MICHAEL PIERDINOCK

RA STATUS:

STATUS REPORT RECEIVED

RAS TYPE:

IMMEDIATE RESPONSE ACTION

RAO CLASS:

TS DATE:

4/22/1997

AUL RESTRICTION:

- Continued on next page -

TARGET SITE:

1.12

131 MAIN ST

._= .

CARVER MA 02330

JOB: 616

STATE SPILLS SITE

SEARCH ID:

DIST/DIR:

0.08 SE

MAP ID:

NAME:

CARMICHAELS MOBIL STATION

ADDRESS: MAIN ST (RTE 58)

CARVER MA 02330

REV: IDI:

-- ._

12/19/03 4-0000612

ID2; STATUS:

PHONE:

TIER1B

CONTACT:

LSP:

MICHAEL PIERDINOCK

RA STATUS:

RAS TYPE:

WRITTEN PLAN RECEIVED IMMEDIATE RESPONSE ACTION

RAO CLASS:

TS DATE:

2/21/1997

AUL RESTRICTION:

LSP:

RA STATUS: RAS TYPE:

MICHAEL PIERDINOCK TRANSMITTAL RECEIVED TIER CLASSIFICATION

RAO CLASS:

TS DATE:

AUL RESTRICTION:

LSP:

RA STATUS: RAS TYPE:

9/4/1998

2/21/1997

MICHAEL PIERDINOCK STATUS REPORT RECEIVED IMMEDIATE RESPONSE ACTION

RAO CLASS:

TS DATE:

AUL RESTRICTION:

LSP:

MICHAEL PIERDINOCK

COMPLETION STATEMENT RECEIVED

RAS TYPE: PHASE I

RAO CLASS:

RA STATUS:

TS DATE:

3/20/1996

AUL RESTRICTION:

LSP: RA STATUS:

MICHAEL PIERDINOCK TRANSMITTAL RECEIVED

RAS TYPE:

RAO CLASS:

TIER2EXT

2/21/1997

ACT DATE: ACT USE LIMITATION:

LSP:

ACT STATUS: ACT TYPE:

COMPLETION STATEMENT RECEIVED

PHASE 1

- Continued on next page -

TARGET SITE:

131 MAIN ST

CARVER MA 02330

JOB: 616

STATE SPILLS SITE

SEARCH ID: 5

DIST/DIR:

0.08 SE

MAP ID:

1

NAME:

CARMICHAELS MOBIL STATION

ADDRESS: MAIN ST (RTE 58)

CARVER MA 02330

REV; ID1:

12/19/03

ID2;

4-0000612

CONTACT:

STATUS: PHONE:

TIERIB

ACT DATE:

8/16/1999

ACT USE LIMITATION:

LSP:

ACT STATUS: ACT TYPE:

PERMIT EFFECTIVE DATE TIER CLASSIFICATION

RAO CLASS:

1/15/1989

ACT DATE: ACT USE LIMITATION:

LSP:

ACT STATUS:

VALID TRANSITION SITE RELEASE DISPOSITION

8/24/2001

ACT TYPE: RAO CLASS:

ACT DATE:

ACT USE LIMITATION:

LSP:

MICHAEL WEBSTER

ACT STATUS:

STATUS REPORT RECEIVED IMMEDIATE RESPONSE ACTION

ACT TYPE:

RAO CLASS:

ACT DATE: 2/26/2002

ACT USE LIMITATION:

LSP:

MICHAEL WEBSTER

ACT STATUS: ACT TYPE:

IMRCD PHASE 5

RAO CLASS:

Environmental Passearca Site Detail Report

TARGET SITE:

131 MAIN ST

CARVER MA 02330

JOB: 616

STATE SPILLS SITE

SEARCH ID: 6

DIST/DIR:

0.09 NW

MAP ID:

4

NAME:

INTERSECTION OF MALDOW & MAIN ST

ADDRESS: 131 MAIN ST

CARVER MA 02330

REV: IDI: 3/12/04 4-0017825

ID2:

UNCLSS

CONTACT:

STATUS: PHONE:

SITE INFORMATION

STATUS: UNCLASSIFIED - A release that has not reached its Tier Classification deadline (usually one year after it was reported), and where an RAO Statement, DPS Submittal, or Tier Classification Submittal has not been received by DEP.

CATEGORY:

TWO HR

21E STATUS:

UNCLASSIFIED

DATE:

RAO CLASS:

5/16/2003

21E DATE: HAZMAT TYPE: 5/16/2003 OIL

PHASE:

LOCATION TYPE:

RESIDNTIAL, COMMERCIAL,

SOURCE:

UNKNOWN;

SITE DESCRIPTION:

CHEMICALS

UNKNOWN CHEMICAL OF TYPE - OIL

SITE ACTIONS

ACT DATE:

5/16/2003

ACT USE LIMITATION:

LSP:

ACT STATUS:

APORAL

ACT TYPE:

ORAL APPROVAL OF PLAN

RAO TYPE:

ACT DATE:

5/16/2003

ACT USE LIMITATION:

LSP:

ACT STATUS:

REPORT

ACT TYPE: RAO TYPE: REPORTABLE RELEASE UNDER MGL 2

Selected Site Details Page - 12

TARGET SITE:

ACT STATUS:

ACT TYPE:

RAO TYPE:

ASSESS

IRA ASSESSMENT ONLY

131 MAIN ST

CARVER MA 02330

JOB:

616

STATE SPILLS SITE SEARCH ID: 7 DIST/DIR: 0.09 SE MAP ID: 2 NAME: NO LOCATION AID REV: 3/12/04 ADDRESS: 132 MAIN ST IDI: 4-0012848 CARVER MA 02330 ID2: STATUS: TIERID CONTACT: PHONE: SITE INFORMATION STATUS: TIER ID - A site/release where the responsible party fails to provide a required submittal to DEP by a specified deadline. Note: formerly Default Tier 1B. CATEGORY: TWO FIR 21E STATUS: TIER 1D DATE: 2/14/1997 21E DATE: 2/24/1998 PHASE: HAZMAT TYPE: HAZARDOUS MATERIAL RAO CLASS: LOCATION TYPE: UNKNOWN; SOURCE: SITE DESCRIPTION: **CHEMICALS** BENZENE 14 PPB SITE ACTIONS ACT DATE: 2/14/1997 ACT USE LIMITATION: LSP: ACT STATUS: REPORT ACT TYPE: REPORTABLE RELEASE UNDER MGL 2 RAO TYPE: ACT DATE: 2/14/1997 ACT USE LIMITATION: LSP:

Environmental Photocurci Site Detail Report

TARGET SITE:

131 MAIN ST

CARVER MA 02330

616 JOB:

STATE SPILLS SITE in the state of th

SEARCH ID: 8

DIST/DIR:

0.46 NE

MAP ID:

5

NAME:

NO LOCATION AID ADDRESS: 5 BISBEE DR

CARVER MA 02330

REV: ID1:

3/12/04

4-0016867

ID2: STATUS:

RAO

CONTACT:

PHONE:

SITE INFORMATION

STATUS: RAO - (Response Action Outcome): a site/release where an RAO statement was submitted. An RAO Statement asserts that response actions were sufficient to achieve a level of no significant risk or at least ensure that all substantial hazards were eliminated.

CATEGORY:

TWO HR

21E STATUS:

RAO

DATE: PHASE: 2/4/2002

21E DATE: HAZMAT TYPE: 10/24/2002 OIL

RAO CLASS:

B1 - REMEDIAL ACTIONS HAV

LOCATION TYPE:

SOURCE:

UNKNOWN;

SITE DESCRIPTION:

CHEMICALS

OIL

SITE ACTIONS

ACT DATE:

10/24/2002

ACT USE LIMITATION:

NONE

LSP:

JOSEPH SALVE

ACT STATUS:

FEEREC

ACT TYPE: RAO TYPE: FEE RECEIVED-FMCRA USE ONLY B1 - REMEDIAL ACTIONS HAVE NOT

ACT DATE:

2/4/2002

ACT USE LIMITATION:

LSP: ACT STATUS:

REPORT

ACT TYPE: RAO TYPE: REPORTABLE RELEASE UNDER MGL 2

Selected Site Details Page - 14

TARGET SITE:

131 MAIN ST

CARVER MA 02330

JOB:

616

STATE SPILLS SITE

SEARCH ID:

DIST/DIR:

0.09 NW

MAP ID:

NAME:

RTE 58

ADDRESS: 131 MAIN ST

CARVER MA 02330

REV: IDI:

3/12/04 4-0013333

ID2:

TIERII

CONTACT:

STATUS: PHONE:

SITE INFORMATION

STATUS: THER 2 - A site/release receiving a total NRS score less than 350, unless the site meets any of the Tier 1 Inclusionary Criteria (CMR 40.0520(2)(a)). Permits are not required at Tier 2 sites/releases and response actions may be performed under the supervision of an LSP without prior DEP approval. All pre-1993 transition sites that have accepted waivers are categorically Tier 2 sites.

CATEGORY:

72 HR

21E STATUS: 21E DATE:

TIER 2 3/18/1999

DATE: PHASE:

9/8/1997 PHASE II

HAZMAT TYPE:

OIL AND HAZARDOUS MATERIAL

RAO CLASS:

LOCATION TYPE:

SOURCE:

COMMERCIAL, UST; UNKNOWN;

SITE DESCRIPTION:

CHEMICALS

UNKNOWN CHEMICAL OF TYPE - HAZARDOUS MATERIAL 4000 PPB TOTAL PETROLEUM HYDROCARBONS (TPH) 1.3 PPM BENZENE 93 PPB

SITE ACTIONS

ACT DATE:

1/26/1999 NONE

ACT USE LIMITATION:

LSP;

BARTLETT PAU

ACT STATUS: ACT TYPE:

STMRET

SUBMITTAL RETRACTED

RAO TYPE:

C - A TEMPORARY SOLUTION, WHIC

ACT DATE:

3/18/1999

ACT USE LIMITATION: LSP:

THEODORE KAE

ACT STATUS:

CSRCVD

ACT TYPE: RAO TYPE: COMPLETION STATEMENT RECEIVED

ACT DATE: ACT USE LIMITATION: 3/18/1999

LSP:

THEODORE KAE TIERII

ACT STATUS: ACT TYPE;

RAO TYPE:

TIER 2 CLASSIFICATION

- Continued on next page -

TARGET SITE:

131 MAIN ST

CARVER MA 02330

JOB: 616

STATE SPILLS SITE

SEARCH ID:

DIST/DIR:

0.09 NW

MAP ID:

NAME:

RTE 58

ADDRESS: 131 MAIN ST CARVER MA 02330

REV: ID1: ID2:

STATUS:

PHONE:

3/12/04

4-0013333

TIERII

CONTACT:

9/8/1997

ACT DATE: ACT USE LIMITATION:

LSP;

BARTLETT PAU

ACT STATUS:

REPORT

ACT TYPE:

REPORTABLE RELEASE UNDER MGL 2

RAO TYPE:

TARGET SITE:

131 MAIN ST

CARVER MA 02330

JOB: 616

STATE SPILLS SITE

SEARCH ID: 10 DIST/DIR:

0.09 NW

-.

MAP ID:

NAME:

RTE 58 - EAGLE GAS STATION

ADDRESS: 131 MAIN ST CARVER MA 02330 REV: ID1:

3/12/044-0017582

TIERID

1D2:

STATUS:

PHONE:

CONTACT:

SITE INFORMATION

STATUS: UNCLASSIFIED - A release that has not reached its Tier Classification deadline (usually one year after it was reported), and where an RAO Statement, DPS Submittal, or Tier Classification Submittal has not been received by DEP.

CATEGORY:

72 HR

21E STATUS:

UNCLASSIFIED

DATE:

1/21/2003

21E DATE: HAZMAT TYPE:

graphic between the second control of the second

1/21/2003 OIL.

PHASE:

RAO CLASS:

LOCATION TYPE:

COMMERCIAL,

SOURCE:

SITE DESCRIPTION:

UNKNOWN; UST;

CHEMICALS

DIESEL FUEL GASOLINE 10 INCH

SITE ACTIONS

ACT DATE:

3/24/2003

ACT USE LIMITATION:

LSP:

ACT STATUS:

REPORT

ACT TYPE:

REPORTABLE RELEASE UNDER MGL 2

RAO TYPE:

ACT DATE: ACT USE LIMITATION: 1/21/2003

LSP:

ACT STATUS:

REPORT

ACT TYPE:

REPORTABLE RELEASE UNDER MGL 2

RAO TYPE:

ACT DATE:

7/8/2003

ACT USE LIMITATION:

LSP: ACT STATUS:

STRCVD

ACT TYPE:

STATUS REPORT RECEIVED

RAO TYPE:

TARGET SITE:

LEAK DETECTION:

TANK NUMBER: TANK STATUS:

SERIAL NUMBER: ABOVE GROUND:

CAPACITY(GAL):

131 MAIN ST

CARVER MA 02330

REMOVED

N

4000

JOB: 616

REGISTERED UNDERGROUND STORAGE TANKS SEARCH ID: 11 DIST/DIR: $0.09 \, NW$ MAP ID: NAME: EAGLE GAS INC REV: 3/5/04 ADDRESS: 131 MAIN ST ID1: 0-013175 CARVER MA 02330 ID2; 23052 STATUS: CONTACT: PHONE: TOTAL NUMBER OF TANKS: 8 OWNER INFORMATION OWNER NAME: EAGLE GAS INC OWNER ADDRESS: 131 MAIN ST CARVER MA 02330 FACILITY TYPE: GAS STATION WORK PHONE; (508) 866-9098 TANK INFORMATION TANK NUMBER: TANK STATUS: REMOVED SERIAL NUMBER: ABOVE GROUND: CAPACITY(GAL): 4000 CONTENTS: GASOLINE USE; TANK MATERIAL: STEEL TANK TYPE: LEAK DETECTION: PIPE MATERIAL: PIPE TYPE: LEAK DETECTION: TANK NUMBER: TANK STATUS: REMOVED SERIAL NUMBER: ABOVE GROUND: CAPACITY(GAL): 4000 CONTENTS: GASOLINE USE: TANK MATERIAL: STEEL TANK TYPE: LEAK DETECTION: PIPE MATERIAL: PIPE TYPE:

- Continued on next page -

TARGET SITE:

131 MAIN ST

CARVER MA 02330

GASOLINE

REMOVED

N

4000

DIESEL

STEEL

IN USE

5000

MV

GASOLINE

CATHODIC

STEEL

JOB: 616

REGISTERED UNDERGROUND STORAGE TANKS

SEARCH ID: 11 DIST/DIR: 0.09 NW MAP ID:

NAME: EAGLE GAS INC

CARVER MA 02330

ADDRESS: 131 MAIN ST

REV: IDI: ID2;

3/5/04 0-013175 23052

STATUS: PHONE:

CONTACT:

CONTENTS: USE:

TANK MATERIAL; TANK TYPE:

LEAK DETECTION:

PIPE MATERIAL: PIPE TYPE:

LEAK DETECTION:

TANK NUMBER:

TANK STATUS:

SERIAL NUMBER:

ABOVE GROUND:

CAPACITY(GAL): CONTENTS: USE:

TANK MATERIAL:

TANK TYPE:

LEAK DETECTION:

PIPE MATERIAL: PIPE TYPE:

LEAK DETECTION:

TANK NUMBER:

TANK STATUS: SERIAL NUMBER:

ABOVE GROUND:

CAPACITY(GAL): CONTENTS: USE:

TANK MATERIAL: TANK TYPE:

LEAK DETECTION:

PIPE MATERIAL:

FLEXIBLE

2 WALLS

PIPE TYPE: 2 WALLS

LEAK DETECTION:

Interstitial Space Monitor

Interstitial Monitoring

- Continued on next page -

TARGET SITE:

131 MAIN ST

CARVER MA 02330

.

JOB: 616

REGISTERED UNDERGROUND STORAGE TANKS

SEARCH ID:

DIST/DIR:

 $0.19\,\mathrm{NW}$

MAP ID:

6

NAME:

THALIA F. CARMICHAEL

ADDRESS: MAIN STREET

REV: ID1:

0-013172

PIPE MATERIAL:

PIPE TYPE:

FLEXIBLE 2 WALLS

LEAK DETECTION:

Interstitial Space Monitor

TANK NUMBER:

TANK STATUS:

SERIAL NUMBER:

IN USE

ABOVE GROUND:

N

CAPACITY(GAL): CONTENTS:

4000 DIESEL.

USE: TANK MATERIAL: M V

TANK TYPE:

CATHODIC 2 WALLS

LEAK DETECTION:

Interstitial Monitoring

PIPE MATERIAL:

PIPE TYPE:

FLEXIBLE

2 WALLS

LEAK DETECTION:

Interstitial Space Monitor

TARGET SITE: 131 MAIN ST

JOB: 616

CARVER MA 02330

REGISTERED UNDERGROUND STORAGE TANKS

SEARCH ID: 12

DIST/DIR:

0.19 NW

MAP ID:

. ---

6

NAME:

NAME: THALIA F. CARMICHAEL ADDRESS: MAIN STREET

CARVER MA 02330

ID1:

0-013172

1D2:

REV:

PRIVATE

CONTACT: THALIA F. CARMICHAEL

STATUS: PHONE:

(617) 866-2760

	<u>Tanks</u>	<u>Installed</u>	Capacity
CURRENT:	3	MAY 71	3000 - 5000
REMOVED:	0		
PERMANENT:	0		
UNKNOWN:	0		
TEMP;	0		
CLOSED:	0		
PRODUCTS:	GASOLINE		
TANK MATERIAL:	BARE STEEL, GA	I.VANIZED STEEL	
PIPE MATERIAL:	OTHER		

TARGET SITE:

131 MAIN ST

CARVER MA 02330

--- --

616 JOB:

LEAKING UNDERGROUND STORAGE TANKS

13 SEARCH ID:

DIST/DIR:

0.09 NW

MAP ID:

NAME:

RTE 58

ADDRESS: 131 MAIN ST

CARVER MA 02330

REV: ID1:

3/12/04 4-0013333

TIERII

_ :-=... ..

1D2: STATUS:

PHONE:

-2.

CONTACT:

SITE INFORMATION

STATUS: TIER 2 - A site/release receiving a total NRS score less than 350, unless the site meets any of the Tier 1 inclusionary Criteria (CMR 40.0520(2)(a)). Permits are not required at Tier 2 sites/releases and response actions may be performed under the supervision of an LSP without prior DEP approval. All pre-1993 transition sites that have accepted waivers are categorically Tier 2 sites.

LOCATION TYPE:

COMMERCIAL,

SOURCE:

UNKNOWN; UST;

SITE DESCRIPTION:

CHEMICALS

TOTAL PETROLEUM HYDROCARBONS (TPH) 1.3 PPM

BENZENE 93 PPB

UNKNOWN CHEMICAL OF TYPE - HAZARDOUS MATERIAL 4000 PPB

SITE ACTIONS

ACT DATE:

1/26/1999

ACT USE LIMITATION:

NONE BARTLETT PAU

LSP: ACT STATUS:

SUBMITTAL RETRACTED

ACT TYPE:

RESPONSE ACTION OUTCOME - RAO

RAO CLASS:

C - A TEMPORARY SOLUTION, WHIC

ACT DATE:

ACT USE LIMITATION:

9/8/1997

BARTLETT PAU

ACT STATUS:

REPORTABLE RELEASE UNDER MGL 2

ACT TYPE:

RELEASE DISPOSITION

RAO CLASS:

ACT DATE:

3/18/1999

LSP:

ACT USE LIMITATION:

THEODORE KAE

ACT STATUS:

COMPLETION STATEMENT RECEIVED PHASE 1

ACT TYPE:

ACT DATE:

RAO CLASS:

3/18/1999

ACT USE LIMITATION: LSP:

THEODORE KAE

ACT STATUS: ACT TYPE:

TIER 2 CLASSIFICATION

RAO CLASS:

TIER CLASSIFICATION

TARGET SITE:

131 MAIN ST

CARVER MA 02330

JOB: 616

. ..._ ... - .---

LEAKING UNDERGROUND STORAGE TANKS

SEARCH ID: 14 DIST/DIR:

... ______

0.09 NW

MAP ID:

. .. .

NAME;

RTE 58 - EAGLE GAS STATION

ADDRESS: 131 MAIN ST

CARVER MA 02330

REV: ID1:

3/12/04 4-0017582

ID2:

STATUS:

TIERID

CONTACT:

PHONE:

SITE INFORMATION

STATUS: - Tier1D, a release where the responsible party fails to provide a required submittal to DEP by a specified deadline.

LOCATION TYPE:

COMMERCIAL,

SOURCE:

UNKNOWN; UST;

SITE DESCRIPTION:

CHEMICALS

GASOLINE 10 INCH DIESEL FUEL

SITE ACTIONS

ACT DATE:

3/24/2003

ACT USE LIMITATION:

LSP:

ACT STATUS:

REPORTABLE RELEASE UNDER MGL 2

ACT TYPE: RAO CLASS: RELEASE NOTIFICATION

ACT DATE:

7/8/2003

ACT USE LIMITATION:

LSP:

ACT STATUS:

STATUS REPORT RECEIVED

ACT TYPE: RAO CLASS: IMMEDIATE RESPONSE ACTION

ACT DATE:

1/21/2003

ACT USE LIMITATION:

LSP: ACT STATUS:

REPORTABLE RELEASE UNDER MGL 2

._____

ACT TYPE:

RELEASE DISPOSITION

RAO CLASS:

TARGET SITE:

131 MAIN ST

CARVER MA 02330

JOB: 616

STATE SPILLS SITE

SEARCH ID: 15

DIST/DIR: NON GC

MAP ID:

NAME:

NO LOCATION AID

ADDRESS: PLYMOUTH & NORTH MAIN ST

CARVER MA 02330

REV: ID1:

4-0011138

UST

1D2:

STATUS:

PHONE:

CONTACT:

CASE #: CLOSED:

SPILL DATE:

NOTIFIER:

SPILL TIME: **REPORT DATE:** 02/16/95

PHONE: STAFF:

MATERIAL: GASOLINE

PET/HAZ:

LUST:

PCB LEVEL:

UST

VIR/WASTE: INCIDENT:

SOIL CONTAM: 72 HR

SOURCE: ENV IMPACT: CONTRACTOR:

QUANTITY REPORTED: QUANTITY ACTUAL:

UNITS REPORTED:

PREPARE RPT: DAYS/CLOSE:

UNITS ACTUAL:

TARGET SITE:

131 MAIN ST

CARVER MA 02330

JOB: 616

REGISTERED UNDERGROUND STORAGE TANKS

SEARCH ID: 16 DIST/DIR:

NON GC

MAP ID:

NAME:

TOWN OF CARVER

ADDRESS: MAIN ST

CARVER MA 02330

REV: ID1:

3/5/04 0-013168

ID2:

23052

CONTACT:

STATUS: PHONE:

TOTAL NUMBER OF TANKS:

5

OWNER INFORMATION

OWNER NAME: OWNER ADDRESS: TOWN OF CARVER

MAIN ST

CARVER MA 02330

FACILITY TYPE:

MUNICIPAL

(617) 866-2561

REMOVED

GASOLINE

WORK PHONE:

TANK INFORMATION

TANK NUMBER:

TANK STATUS:

SERIAL NUMBER;

ABOVE GROUND:

CAPACITY(GAL):

CONTENTS:

USE:

TANK MATERIAL: TANK TYPE:

LEAK DETECTION:

STEEL

10000

N

PIPE MATERIAL:

PIPE TYPE:

LEAK DETECTION:

STEEL

REMOVED

GASOLINE

TANK NUMBER:

TANK STATUS:

SERIAL NUMBER:

ABOVE GROUND: CAPACITY(GAL):

CONTENTS: USE:

TANK MATERIAL:

TANK TYPE:

LEAK DETECTION:

PIPE MATERIAL:

PIPE TYPE: LEAK DETECTION: STEEL

STEEL

10000

N

TANK STATUS:

TANK NUMBER:

SERIAL NUMBER: ABOVE GROUND: CAPACITY(GAL):

REMOVED

1000

- Continued on next page -

TARGET SITE:

131 MAIN ST

CARVER MA 02330

JOB: 616

REGISTERED UNDERGROUND STORAGE TANKS				
SEARCH ID: 16	DIST/DIR:	NON GC	MAP ID:	
NAME: TOWN OF CARVER ADDRESS: MAIN ST CARVER MA 02330		REV: ID1: ID2: STATUS:	3/5/04 0-013168 23052	,
CONTACT:		PHONE:		<u> </u>
CONTENTS: USE:	DIESEL			
TANK MATERIAL: TANK TYPE:	STEEL.			
LEAK DETECTION:				
PIPE MATERIAL: PIPE TYPE: LEAK DETECTION:	STEEL			!
TANK NUMBER:	4			
TANK STATUS:	IN USE			
SERIAL NUMBER:	.,			
ABOYE GROUND: CAPACITY(GAL):	N 10000			
CONTENTS: USE:	GASOLINE			•
TANK MATERIAL:	CATHODIC			
TANK TYPE: LEAK DETECTION:	2 WALLS Interstitial Monitoring			
PIPE MATERIAL:	REINFORCED			
PIPE TYPE:	PRESSURE			•
LEAK DETECTION:	Interstitial Space Monitor			
				:
TANK NUMBER:	5 N. Her.			
TANK STATUS: SERIAL NUMBER:	IN USE			
ABOVE GROUND:	N			
CAPACITY(GAL):	10000			
CONTENTS: USE:	DIESEL			i !
TANK MATERIAL:	CATHODIC			
TANK TYPE:	2 WALLS			
LEAK DETECTION:	Interstitial Monitoring			
PIPE MATERIAL:	REINFORCED			
PIPE TYPE:	PRESSURE			
LEAK DETECTION:	Interstitial Space Monitor			

TARGET SITE: 131 MAIN ST

CARVER MA 02330

JOB: 616

LEAKING UNDERGROUND STORAGE TANKS

DIST/DIR: NON GC MAP ID:

NAME:

SEARCH ID:

TOMS TEXACO STATION

17

NORTH MAIN STREET RTE 58 AND 4 ADDRESS:

CARVER MA 02330

REV: IDI:

3/12/04 4-0000194

ID2:

RAO

CONTACT:

STATUS: PHONE:

SITE INFORMATION

STATUS: RAO - (Response Action Outcome): a site/release where an RAO statement was submitted. An RAO Statement asserts that response actions were sufficient to achieve a level of no significant risk or at least ensure that all substantial hazards were eliminated.

CONFIRMED:

1/15/1987

DELETED;

REMOVED:

LOCATION TYPE:

COMMERCIAL, FORMER, GASSTATION,

SOURCE:

SITE DESCRIPTION:

GROUNDWATER RELEASE; GASOLINE PRESENT; FORMER; GAS STATION; CONTAINED

IN A LUST; RELEASE TO SOIL;

OTHER CONTAMINATION: OTHER RELEASES: OTHER PROBLEMS: OTHER TYPE OF SITE:

CHEMICALS

GASOLINE

SITE ACTIONS

TS DATE:

3/2/1995

AUL RESTRICTION:

NON

LSP:

THOMAS QUIGLEY

RA STATUS:

RAO STATEMENT RECEIVED

RAS TYPE;

RESPONSE ACTION OUTCOME - RAO

RAO CLASS:

C - A TEMPORARY SOLUTION, WHICH ENSURES THE ELIMINATION OF ANY SUBSTANTIAL HAZARD,

HAS BEEN ACHIEVED AT THE DISPOSAL SITE.

TS DATE:

3/1/1995

LSP:

AUL RESTRICTION:

RA STATUS:

THOMAS QUIGLEY

RAS TYPE: RAO CLASS:

ACT DATE: ACT USE LIMITATION:

3/2/1995 NONE

TS-ACCEPT

LSP:

ACT STATUS:

RAO STATEMENT RECEIVED

ACT TYPE:

RESPONSE ACTION OUTCOME - RAO

RAO CLASS:

C - A TEMPORARY SOLUTION, WHIC

- Continued on next page -

TARGET SITE:

131 MAIN ST

CARVER MA 02330

616 JOB:

RAO

PHONE:

LEAKING UNDERGROUND STORAGE TANKS

NON GC MAP ID: DIST/DIR: SEARCH ID:

TOMS TEXACO STATION NAME:

3/12/04 REV: IDI: 4-0000194 ADDRESS: NORTH MAIN STREET RTE 58 AND 4

CARVER MA 02330 ID2: STATUS:

3/1/1995

ACT DATE:

ACT USE LIMITATION:

LSP:

ACT STATUS: PERMIT EFFECTIVE DATE TIER CLASSIFICATION ACT TYPE:

RAO CLASS:

CONTACT:

12/16/1988 ACT DATE:

ACT USE LIMITATION:

LSP:

TIER IA OR PRIORITY SUBMITTAL ACT STATUS:

ACT TYPE: PHASE 2

RAO CLASS:

7/11/1986 ACT DATE:

ACT USE LIMITATION:

LSP:

VALID TRANSITION SITE ACT STATUS: RELEASE DISPOSITION ACT TYPE:

RAO CLASS:

Environmental FirstSearch Federal Databases and Sources

1. NPL: National Priority List. The EPA's list of confirmed or proposed Superfund sites. Source: Environmental Protection Agency.

Updated quarterly.

2. CERCLIS: Comprehensive Environmental Response Compensation and Liability Information System. The EPA's database of current and potential Superfund sites currently or previously under investigation. Source: Environmental Protection Agency.

Updated quarterly.

3. RCRIS: Resource Conservation and Recovery Information System. The EPA's database of registered hazardous waste generators and treatment, storage and disposal facilities. Included are RAATS (RCRA Administrative Action Tracking System) and CMEL (Compliance Monitoring & Enforcement List). Source: Environmental Protection Agency.

Updated quarterly.

4. ERNS: Emergency Response Notification System.
The EPA's database of emergency response actions. Source: Environmental Protection Agency.

Updated quarterly.

5. NPDES: National Pollution Discharge Elimination System.

The EPA's database of all permitted facilities receiving and discharging effluents. Source: Environmental Protection Agency.

Updated semi-annually.

6. FINDS: The Facility Index System. The EPA's Index of identification numbers associated with a property or facility which the EPA has investigated or has been made aware of in conjunction with various regulatory programs. Each record indicates the EPA office that may have files on the site or facility. Source: Environmental Protection Agency.

Updated semi-annually.

7. TRIS: Toxic Release Inventory System. The EPA's database of

all facilities that have had or may be prone to toxic material releases. Source: Environmental Protection Agency.

Updated semi-annually.

8. ACEC: Areas of Critical Environmental Concern. This database

contains contact information for threatened and endangered species. Source: U.S. Fish and Wildlife Services, Ecological Services Offices; State GIS Departments.

Updated periodically.

9. Floodplains - 100 year and 500 year flood zone boundaries for

select counties in the United States. Source: Federal Emergency Management Agency (FEMA).

This database will be updated by us as new data becomes available for purchase.

10. **Historic Sites-** National Register of Historical Places Database. The nation's official list of cultural resources worthy of preservation. Properties listed include districts, sites, buildings, structures, and objects that are significant

Environmental FirstSearch Massachusetts Databases and Sources

1. State Sites: Confirmed Disposal Sites and Locations To Be Investigated. The Department of Environmental Protection Agency database of confirmed, LTBI, waiver, deleted and reserved sites maintained by the Bureau of Waste Site Cleanup.

Updated immediately upon release.

2. Spills: The Department of Environmental Protection Agency database of emergency response actions and spill releases maintained by the Bureau of Waste Site Cleanup.

Updated immediately upon release.

3. Landfills: The Department of Environmental Protection Agency Agency database of active solid waste landfill facilities maintained by the Division of Solid Waste Management.

Updated annually.

4. UST: Underground Storage Tanks. The Department of Public Safety/Office of the Fire Marshall's database of registered underground storage tanks.

Updated semi-annually.

5. PWS: The Department of Environmental Protection Agency's database of public water supply well locations maintained by the Division of Water Supply and MassGIS.

Updated semi-annually.

6. Aquifers: The Executive Office of Environmental Affairs GIS database of high, medium and low yield aquifers, EPA sole source aquifers, known zone II boundaries for public water supplies and surface water.

Updated annually.

7. ACEC: Areas of Critical Environmental Concern. The Executive Office of Environmental Affairs GIS database of legislated ACECs, protected open spaces, estimated habitats of endangered species and vernal pools.

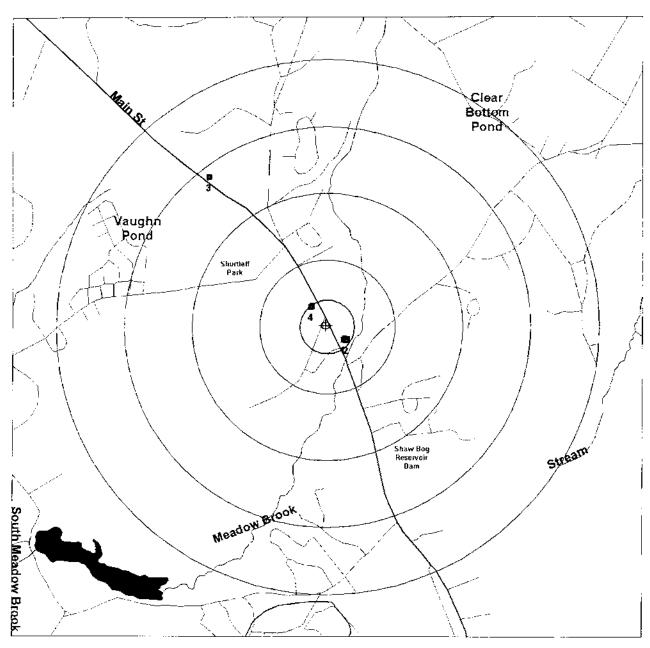
Updated annually.

Environmental FirstSearch Street Name Report for Streets within .25 Mile(s) of Target Property

TARGET SITE: 131 MAIN

131 MAIN ST CARVER MA 02330 **JOB:** 616

Street Name	Dist/Dir	Street Name	 	Dist/Dir	-
Carver Square Blvd	0.25 NW				
Cresent Rd	0.17 SE				
Main St	0.01 NE				
S Meadow Rd	0.16 SE				
SOUTH Meadow Rd	0.16 SE				



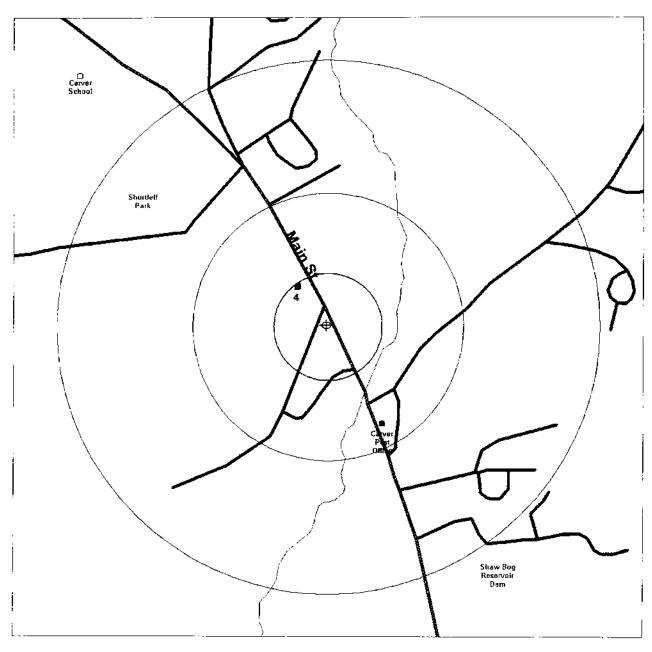
Environmental FirstSearch

1 Mile Radius ASTM Map: NPL, RCRACOR, STATE Sites

131 MAIN ST, CARVER MA 02330

Source: 1999 U.S. Census TIGER Files	
Target Site (Latitude: 41.884684 Longitude: -70.766162)	_
Identified Site, Multiple Sites, Receptor	i
NPL, Solid Waste Landfill (SWL) or Hazardous Waste	∞
Railroads	

Black Rings Represent 1/4 Mile Radii; Red Ring Represents 500 ft. Radius



Environmental FirstSearch

.5 Mile Radius ASTM Map: CERCLIS, RCRATSD, LUST, SWL

131 MAIN ST, CARVER MA 02330

Source: 1999 U.S. Census TIGER Files

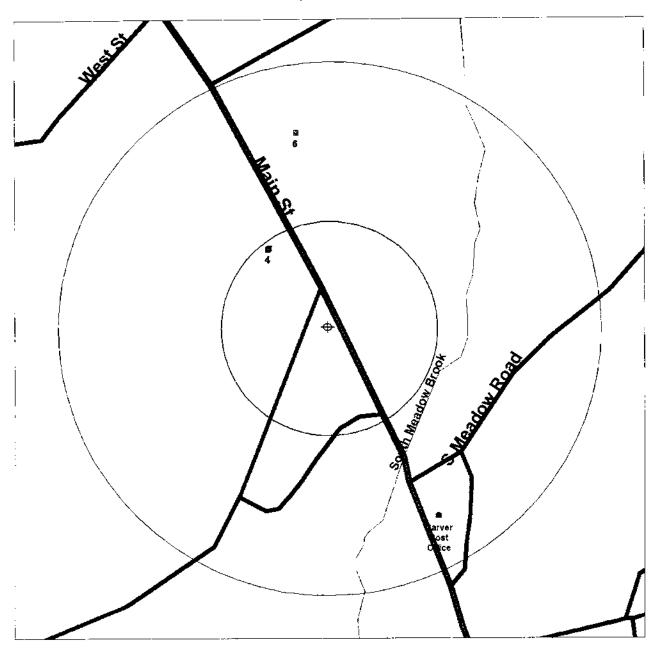
Target Site (Latitude: 41.884684 Longitude: -70.766162)

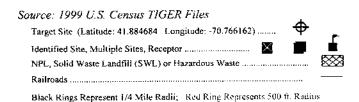
Identified Site, Multiple Sites, Receptor

NPL, Solid Waste Landfill (SWL) or Hazardous Waste

Railroads

Black Rings Represent 1/4 Mile Radii; Red Ring Represents 500 ft. Radius




Environmental FirstSearch

.25 Mile Radius ASTM Map: RCRAGEN, ERNS, UST

131 MAIN ST, CARVER MA 02330

APPENDIX F ENVIRONMENTAL SITE ASSESSMENT OF 132 MAIN STREET

Environmental Site Assessment

of

132 Main Street Carver, Massachusetts

Prepared For

Our Lady of Lourdes Parish Carver Square Carver, Massachusetts

April 7, 1997

NORFOLK ENVIRONMENTAL

Norfolk International Corp. 378 Page Street - Bldg. #10 Stoughton, MA 02072-1141

Phone Fax

(617) 297-5200 (617) 297-7050

NORFOLK ENVIRONMENTAL

378 Page Street - Bldg. #10 Reply to:

Stoughton, MA 02072-1141 (617) 297-5200 Phone

(617) 297-7050 Fax

April 7, 1997

Rev. Edward Gallagher Our Lady of Lourdes Parish Carver Square Carver, MA 02366

Re:

Environmental Site Assessment

132 Main Street

Carver, Massachusetts

Dear Father Gallagher:

Enclosed is the Environmental Site Assessment Report requested by Our Lady of Lourdes Parish in Carver, Massachusetts and the Archdiocese of Boston.

If you have any questions or comments concerning this report, please do not hesitate to call the undersigned at (617) 297-5200. Norfolk appreciates the opportunity to have been of service.

Sincerely, NORFOLK ENVIRONMENTAL

Andrew T. Donoghue Environmental Scientist

Mark S. Bartlett, P.E.

President

Attachments: Environmental Site Assessment Report

cc:

Mr. William R. Holmes Mr. Dudley S. Mulcahy - Archdiocese of Boston

Table of Contents

Section		<u>Page</u>
1.0	Introduction 1.1 Authorization 1.2 Para and Spans of the Investigation	1 1 1
	1.2 Purpose and Scope of the Investigation	_
2.0	Site Location and Description	2 2
	2.1 Site Location	2
	2.2 Site Description / Conditions	2
3.0	Site History / Environmental History	4
3.0	3.1 Current Use	4
	3.2 Historical Use	4
	3.3 Title/Deed Search	4
	3.4 Spills and Releases of Petroleum or Other	4
	Hazardous Material	-
	3.5 Underground Storage Tanks	5
	3.6 Permits	6
	3.7 Limited Removal Action	6 7
	3.8 Drinking Water Quality	1
4.0	Hazardous Materials and Wastes	7
5.0	Geology / Hydrogeology	7
6.0	Findings	8
7.0	Conclusions and Recommendations	9
8.0	Limitations	9
Figure	Figure 1 Site Locus Figure 2 Site Schematic	
Apper	ndix A: Site Photographs	
Anno	ndiv R. New England DataMan Search	

1.0 Introduction

1.1 Authorization

Pursuant to the request of Our Lady of Lourdes Parish and the Archdiocese of Boston, an Environmental Site Assessment has been performed for the property located at 132 Main Street in Carver, Massachusetts (hereafter referred to as the Site).

1.2 Purpose and Scope of the Investigation

This Investigation has been performed to assess the general environmental condition of the Site which includes, but is not limited to, the following:

- Assessing current conditions and activities at the Site for potential threats to the environment.
- Checking for evidence of a release of petroleum or other hazardous materials at the site.
- Assessing the potential impact of abutters on the Site and if releases of petroleum or other hazardous materials have occurred in the vicinity that may have affected the Site.

To accomplish these goals, the following scope of work has been performed in accordance with industry standards and good practice:

- An extensive site walkover and a visual inspection of the abutting properties from the confines of the Site and public roads.
- Research of the Site history through available records pertaining to the Site and surrounding properties at the Town of Carver Assessor's Office, Board of Health and Building Inspector's Office.
- An inspection of appropriate Wetlands, Aquifer and Zoning maps.
- A study of regional Topography via inspection of the USGS Topographical Maps for the Plympton, Massachusetts Quadrangle.
- A visit to the Town of Carver Fire Department (Fire Prevention Office) to inquire about registered Underground Storage Tanks both in use and removed in the vicinity of the Site.
- Conversations with Mr. William Holmes of 132 Main St., Carver for background information concerning the history of the Site and surrounding area.

 A computer search of State and Federal Government databases by New England DataMap of Dedham, Massachusetts. Databases searched are as follows:

National Priority List CERCLIS List RCRIS TSD/Large Generator List RCRIS Small Generator List Emergency Response Notification List State Priority List State Spills List - 1990's Active Solid Waste Landfills Permitted Facilities Registered Underground Storage Tanks Public Water Supplies

- A visit to the Massachusetts Department of Environmental Protection Southeast Regional Office to review records regarding DEP Sites and reported incidents in the general vicinity of the 132 Main Street, Carver property.
- Sampling of soil in the vicinity of a former underground storage tank (UST) located on the southeast side of the onsite dwelling both before and after conducting a Limited Removal Action (LRA, as defined in 310 CMR 40.0318).
- Sampling and analysis of drinking water at the onsite residence to assess the quality of the water supply from an onsite shallow well.

2.0 Site Location and Description

2.1 Site Location

The Site is located at 132 Main Street in Carver, Massachusetts (see Figure 1, Site Locus), immediately southeast of the Carver Square commercial development and west of South Meadow Brook.

2.2 Site Description / Conditions

An extensive inspection of the Site was performed on December 27, 1996 by Andrew Donoghue of Norfolk Environmental. The inspection of the Site consisted of a walkover of the property and inspection of the single story residence located at the front of the property. Soil samples were also collected from a partially filled excavation cavity remaining from the removal of an underground storage tank (UST) in 1987 (according to the recollection of the homeowner, Mr. William Holmes).

A description of the Site, and other relevant observations and information obtained from the site walkover, conversations with Mr. Holmes, and file searches are as follows:

• Site Description - The Site (see Figure 2: Site Plan) is a 5.5 acre parcel of land. The Site is improved by a single story house (currently occupied by the property owner, Mr. William Holmes) and a two story barn.

The house is located on the southwest side of the property, facing Main Street. The property extends to the northeast until reaching South Meadow Brook which comprises the northeast boundary of the property. The majority of the property is lawn area with the northeast and east end of the property overgrown and wooded.

- Site Boundaries The Site is bounded to the southwest by Main Street and to
 the northwest by Our Lady of Lourdes Parish and the Carver Square
 commercial development. South Meadow Brook bounds the property to the
 northeast and east and a residential property abuts the Site to the southeast.
- Site Utilities Electricity enters the Site via overhead lines. No other utilities
 enter from the street. The house is heated with #2 fuel oil stored in an above
 ground storage tank (located in the basement), water is supplied from an
 onsite well, and sanitary waste is discharged to a septic system located to the
 northeast (rear) of the house.
- Fencing No fencing or barricades are present at the boundaries of the Site.
- Easements No easements were noted in the municipal document review.
- Transformers No transformers were observed on the property itself. One
 utility pole mounted transformer was observed across Main Street in front of
 the Main Street Garage (Eagle Gas Station).
- Drinking Water Supplies A shallow, onsite well is located in the northwest corner of the building. This provides water to the residence and is currently the only available source, as Carver has no municipal water supply. Currently, Mr. Holmes uses bottled water for consumption.
- Ponds, Streams, Wetlands and/or Floodplains South Meadow Brook, a tributary of the Weweantic River, runs along the northeast boundary of the Site and flows to the south southwest.
- Sanitary Sewers/Septic Systems Sanitary waste at the Site is discharged to a septic system located to the rear of the house.
- Vegetation Approximately two thirds of the Site is covered with a cut lawn.
 The remainder of the site along the northeastern and eastern property line (South Meadow Brook) is wooded with thick underbrush
- Catch Basins, Floor Drains, Drainage Lines A series of catch basins are
 present along Main Street to provide drainage during precipitation events. The
 Main Street drainage system eventually discharges to South Meadow Brook
 south of the Site.
- Structures The Site is improved by a single story, wood frame house constructed with a full concrete basement foundation and slab. Also located onsite is a two story barn used for storage and recreation.
- Debris / Litter Small amounts of debris and miscellaneous items such as scrap metal, snow tires and bottles were observed behind the onsite barn.

• Surface Staining - No surface staining was observed during the site walk over. Shallow, sub-surface soil samples collected on December 27, 1996 from the excavation cavity of a former underground storage tank located on the southeast side of the house were observed to be discolored from weathered fuel oil contamination and exhibited a weathered fuel oil odor. Soil from this former tank cavity was excavated and removed from the Site on January 15 and February 20, 1997 and transported to Bardon Trimount of Stoughton, Massachusetts for asphalt batch soil recycling. This work was performed as a Limited Removal Action which is discussed in detail in Section 3.7 below.

3.0 SITE HISTORY / ENVIRONMENTAL HISTORY

Information contained in Section 3.0 was obtained through a file search performed at the Town of Carver municipal offices (Assessors Office, Board of Health, Building Inspectors Office and Fire Department) on January 7, 1997; the Massachusetts Department of Environmental Protection (DEP) Southeast Regional Office in Lakeville on February 9, 1997; the Plymouth County Registry of Deeds, and an online computer search of Federal and State environmental databases.

3.1 Current Use

The Site is currently used for residential purposes and is occupied by the property owner, William Holmes. Structures located on the Site include a single story wood frame house and two story barn.

3.2 Historical Use

The Site has been used for residential purposes since at least 1958. Prior to that time it was likely used either for residential or agricultural purposes.

3.3 Title/Deed Search

The ownership history of the Site was researched through the records at the Plymouth County Registry of Deeds. The chain of Title transactions are follows:

- 2608/295 John A. and Grace B. Silva to Alice N. Adams 12/11/57
- 2623/282 Alice N. Adams to John P. Pierce 3/28/58
- 2706/265 John P. Pierce Jr. to William R. and Virginia K. Holmes. 11/29/58

No other documentation was found regarding previous owners.

3.4 Spills and Releases of Petroleum or other Hazardous Materials

No record of any spills or releases of hazardous materials occurring at the Site or the abutting properties were found through Municipal, State or Federal Government file searches. However, petroleum contamination was encountered in soil samples collected from the excavation cavity which remained after the removal of an underground storage tank in 1987. Also, testing of water from the on-site water supply well indicates the

A UST was excavated and removed from the ground at the Site in 1987. This tank, which remains abandoned at the rear of the property, was observed to have numerous holes from corrosion. It is not known if these holes formed before of after the tank was removed from the ground, however, fuel oil contaminated soils were encountered in the partially backfilled excavation cavity adjacent to the southeast end of the house. Contaminated soil was excavated and removed from the excavation cavity in January and February of 1997 as part of a Limited Removal Action. This is addressed in detail in Section 3.7.

3.6 Environmental Permits

No environmental permits have been issued in association with the Site or properties in the immediate vicinity.

3.7 Limited Removal Action

An 500 gallon UST used for the storage of #2 fuel oil to heat the Holmes residence was taken out of service sometime in 1987, excavated, and removed to the rear of the property. The excavation cavity was observed to be partially backfilled and overgrown with weeds and grasses on December 27, 1996 when the site walkover was performed. Soil samples were collected from the excavation cavity to determine if fuel oil had leaked from the former UST prior to removal. Soils in the walls and floor of the cavity were observed to be discolored and exhibited a mild to moderate weathered fuel oil odor. Soil samples collected on December 27, 1996 were field screened for jar headspace concentrations of volatile petroleum fractions using a calibrated Photo-Vac MicroTip brand photoionization detector. Results of this screening indicated elevated levels of petroleum contamination in the soils from the excavation cavity. It was decided at this point to excavate the area of the tank cavity to determine the extent of the petroleum contamination and if necessary, conduct remedial response actions under the provisions of a Limited Removal Action.

Excavation in the former tank cavity was performed on January 15, 1997. Soil consisting primarily of dense, silty material was encountered. Initially, soil from all excavation side walls and the floor exhibited gray discoloration and an odor typical of weathered fuel oil contamination. A perched water table was encountered at approximately 4.5 to 5.0 feet below surface grade. Soils located below the water surface were not discolored and did not exhibit any significant evidence of contamination. Approximately seven (7) cubic yards of contaminated soil was excavated and stockpiled on polyethylene sheeting. At the conclusion of excavation activities, soil samples were collected from the excavation cavity. Three equally weighted composites were made from these samples and sent to Groundwater Analytical, Inc. of Buzzards Bay, Massachusetts to be analyzed for Total Petroleum Hydrocarbons (TPH) via ASTM Method D3328-78 (GCFID). Results of these analysis indicated an average residual TPH concentration of 503 mg/Kg, exceeding the Method I, S-1 cleanup standard of 500 mg/Kg. In response to this, an additional one and a half to two (1.5 - 2.0) cubic yards were excavated from the base of the southeast end of the excavation cavity on February 20, 1997. A composite soil sample was then collected from this area. Results from this analysis indicated TPH below the method reporting limit of 74 mg/Kg. Combined with previous results, the weighted average of residual TPH associated with the former UST is 425 mg/Kg, below the Method I, S-1 cleanup standard of 500 mg/Kg for TPH. A total of approximately eight (8) cubic yards (12.67 tons) of fuel oil contaminated soil was excavated and shipped from the Site to Bardon Trimount, Inc. of Stoughton, Massachusetts for asphalt batch soil recycling. The soil was transported to Bardon Trimount under a Massachusetts Department of Environmental Protection Bill of Lading.

Remedial actions were performed under the provisions of a Limited Removal Action, as permitted under 310 CMR 40.0318, for releases of oil or hazardous materials indicated solely by the detection of a reportable concentration requiring 120 day notification to the DEP. With an LRA, notification to DEP is not required if soil removal is less than 100 cubic yards and remedial activities are completed within 120 days of obtaining knowledge that a reportable concentration has been exceeded.

A test pit was also excavated approximately fifteen (15) feet southwest of the excavation to check for possible lateral migration of fuel oil contamination and to confirm the depth to groundwater. No visual or olfactory evidence of contamination was observed in soil excavated from the test pit. Groundwater was encountered at approximately 9.5 feet below surface grade in the test pit. It is believed, based on the depth of water in this test pit, that water encountered at 4.5 - 5.0 feet below surface grade in the former UST cavity was perched water resulting from poor drainage near the house. Since soil samples collected from the floor of the excavation approximately 5.5 feet below surface grade did not exhibit evidence of petroleum contamination, it is considered unlikely that groundwater at the Site has been impacted by the release of fuel oil from the former UST.

3.8 Drinking Water Quality

Drinking water at the Site is supplied by a shallow well located in the northwest corner of the basement of the house. Because of concern over the close proximity of a gasoline/service station located across Main Street from the Site, in a presumed hydraulically upgradient direction, sampling and analysis of groundwater at the Site was performed to check for the presence of gasoline/light petroleum related compounds. A sample of the well water was collected by Frank Nichols of Norfolk Environmental on January 14, 1997 and sent to Groundwater Analytical, Inc. to be analyzed for volatile organic compounds (VOC's) via EPA Method 524.2. Benzene was detected through this analysis at 14 µg/L (parts per billion) which exceeds the applicable GW-1 reportable concentration of 5 µg/L. Other compounds detected, but below reportable concentrations, were ethlybenzene, o-xylene, isopropyl benzene and n-propyl benzene. All of these compounds are consistent with typical gasoline constituents. The presumed direction of groundwater flow is to the east southeast toward South Meadow Brook. Given these conditions, it is considered likely that the source of this contamination in the well water is the gas station across Main Street.

The owner of the Site, Mr. Holmes, reported the detection of a reportable concentration of benzene in the well water on February 14, 1997, within 72 hours of obtaining knowledge of the condition, as required by the MCP. Because benzene was detected at less than ten times the reportable concentration, it does not represent an Imminent Hazard as defined by the MCP. According to Mr. Holmes, he is currently using bottled water for drinking water.

4.0 HAZARDOUS MATERIALS AND WASTES

No hazardous materials or wastes were observed being stored on the property, with the exception of #2 fuel oil in an above ground storage tank (AST).

5.0 GEOLOGY/HYDROGEOLOGY

- Regional Geology The geology of the Carver area is characterized as a glacial and glacio-fluvial environment. Predominant unconsolidated sediments in the area consist of glacially derived and fluvially deposited stratified sand, silt, gravel, and clay materials. This material overlays the bedrock, which is reported to consist of granitic to granodionitic and gneissic to schistose materials. These bedrock materials are Lower Paleozoic to Precambrian in age (630 +/-million years).
- Local Hydrogeology Local groundwater levels and seasonal fluctuations of groundwater are known to vary widely in Carver. Observed topographic relief and drainage patterns indicated on the USGS Topógraphical Map, for the Plympton Quadrangle suggests localized groundwater flow at the site to be to the southeast toward South Meadow Brook. Groundwater flow to the southeast is also indicated on the U.S. Department of Interior/USGS Water Resources Investigation Report 40-4204, Plate 1. Plate 1 also indicates that the groundwater elevation between 11/30/84 and 12/02/84 is 90 feet above sea level. The surface elevation shown on the USGS Topographical Map indicates a surface elevation of 99 feet above sea level. Based on this, the depth to groundwater at the Site is expected to be approximately 9 feet below surface grade.
- Site Groundwater Classification Under the Massachusetts Contingency Plan, 310 CMR 40.000, groundwater categories have been established based on site use and surrounding receptors. Because the Site is located within a potentially productive aquifer and no public water supply is available, groundwater at the site meets the criteria of a GW-1 classification. Groundwater at the Site is also classified as GW-3 since all groundwater in the Commonwealth is considered a potential source of discharge to surface waters.
- <u>Topography</u> The topography of the Site is generally flat, with a slight grade to the east southeast.

6.0 FINDINGS

Norfolk Environmental has completed the Environmental Site Assessment of the 132 Main Street property in Carver, Massachusetts. The results of the investigation are as follows:

- The site is a residentially developed 5.5 acre parcel of land of generally flat topography. The Site is improved by a single story house and two story barn.
- A UST used for the storage of #2 fuel oil was removed from the Site in 1987. This UST apparently leaked prior to removal and soil contaminated with weathered #2 fuel oil was encountered in the UST cavity. Contaminated soil was excavated and removed from the former UST cavity and transported to Bardon Trimount, Inc. of Stoughton, Massachusetts for asphalt batch soil recycling as a Limited Removal Action. Analysis of composite confirmation samples indicates that the residual level of contamination measured as TPH in soil is 425 mg/ Kg. Since this is below the applicable Method I, S-1 cleanup standard of 500 mg/Kg for TPH, a Condition of No Significant Risk, as defined by the MCP, has been achieved. Accordingly, the LRA is considered complete and there is no reporting obligation to the DEP.

- Water supplied to the residence by an onsite well located in the northwest corner of the basement was sampled and analyzed for volatile organic compounds (VOC's) via EPA Method 524.2. The results of this analysis indicated the presence of potential gasoline related compounds. Benzene was detected a 14 μg/L which is above the applicable GW-1 reportable concentration of 5 μg/L. The DEP has been notified of the reportable concentration by Mr. Holmes, the homeowner.
- Based upon inspection of the Site, no hazardous materials or wastes are stored at the Site with the exception of #2 fuel oil in a 275 gallon above ground storage tank.
- Fire Department and State records do not indicate the presence of any registered underground storage tanks on the site. Four registered UST's (three 5,000 gallon and one 4,000 gallon) are located across the street to the west northwest of the Site at the Main Street Garage (Eagle gas station) and used to store gasoline. These tanks were installed in 1989 to replace four UST's that had been in service since 1971.
- Groundwater at the Site, in the absence of site specific hydrological data, is presumed to flow to the east/southeast toward South Meadow Brook, based on review of the U.S. Department of Interior/USGS Water Resources Investigation Report 40-4204, Plate 1.

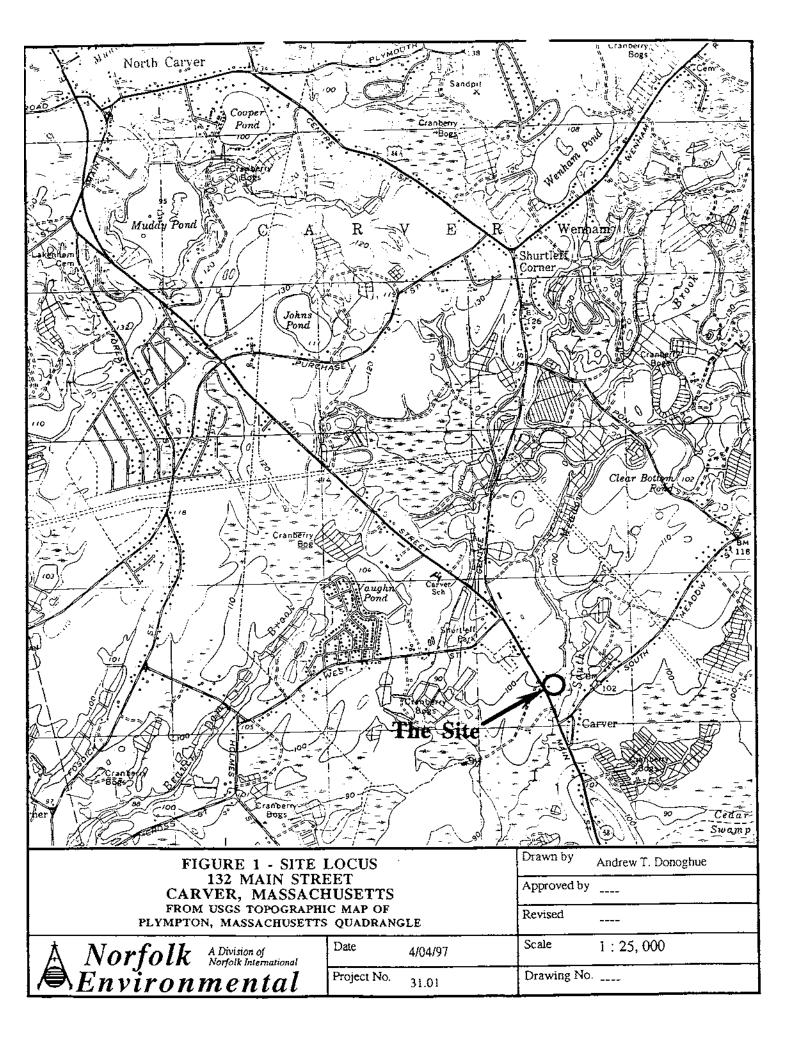
7.0 Conclusions and Recommendations

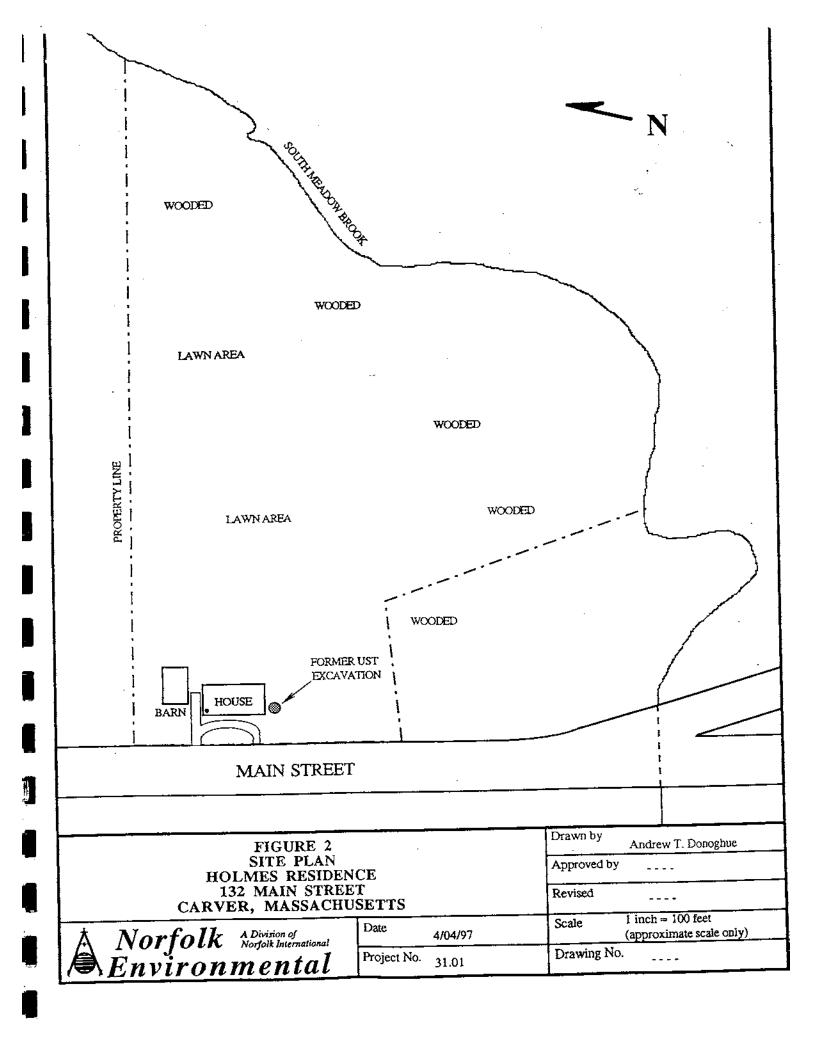
No activities or conditions at the Site observed or discovered through Norfolk Environmental's investigation are considered likely to pose a significant threat to the environment. Petroleum contaminated soil associated with a former UST has been excavated and removed from the Site as a Limited Removal Action and average residual TPH concentrations have been reduced to a level consistent with a Condition of No Significant Risk.

Drinking water at the Site has been determined to contain benzene above the applicable GW-1 Reportable Concentration. The source of this contamination is unknown, but is suspected to be the Main Street Garage service/gas station located across the street. A groundwater investigation will be required to confirm this and determine the potential for obtaining Downgradient Property Status for this Site.

8.0 Limitations

All professional opinions presented in this report are based solely on the scope of work conducted and the sources referred to in this report. The data presented by Norfolk Environmental in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations and materials that were observed at the time the field work was conducted. No inferences regarding other conditions, locations or materials at a


later date or earlier time may be based on the contents of the report. No other warranty, express or implied, is made.


Observations were made of the Site and of structures on the Site as indicated within the report. Where access to portions of the Site or to structures on the Site was unavailable or limited, Norfolk renders no opinion as to the presence of hazardous materials or oil, or to the presence of indirect evidence relating to hazardous material or oil where direct observations of the interior walls, floor, or ceiling of a structure on a site was obstructed by objects or coverings on or over these surfaces.

Norfolk did not perform testing or analyses to determine the presence or concentration of asbestos at the Site or in the environment at the site. Norfolk did not perform testing or analyses to determine the presence or concentration of radon gas at the Site or in the environment at the Site.

The observations described in this report were made under the conditions stated therein. The conclusions presented in the report were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by the Client.

This report was prepared for the sole use of our client. The use of this report by anyone other than our client or Norfolk Environmental is strictly prohibited without the express prior written consent of Norfolk. Portions of this report may not be used independently of the entire report.

APPENDIX G
DOCUMENTATION OF CARVER SQUARE PUBLIC
WATER SUPPLY

MITT ROMNEY Governor

KERRY HEALEY Licutement Governor

COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS DEPARTMENT OF ENVIRONMENTAL PROTECTION SOUTHEAST REGIONAL OFFICE 20 RIVERSIDE DRIVE, LAKEVILLE, MA 02347 508-946-2700

ELLEN ROY HERZFELDER Secretary

ROBERT W. GOLLEDGE, Jr. Commissioner

February 13, 2004

Tony Baldwin Corporate Realty Associates, Inc. 142 Crescent Street Brockton, Massachusetts 02402-3104

RE: Carver

Carver Square PWS ID #4052056

General

Dear Mr. Baldwin:

Please find attached documentation listing the issues the Department of Environmental Protection, the Department, has with the expanded use of the Carver Square Site and it's public water supply zone 1.

Please note that the signature on this cover letter indicates formal issuance of the attached document. If you have any questions regarding this letter, please contact Charles Shurtleff @ 508-946-2879.

Very truly yours,

David A. DeLorenzo

Bureau of Resource Protection

D/CPS

fcc:

Carver Board of Health Carver Board of Selectmen Carver Building Department Carver Fire Department

Y:\DWP Archive\SERO\Carver-4052056-Enforcement-2004-02-13 Cshurtleff/Carver/status4052056

MITT ROMNEY
Governor
KERRY HEALEY

Lieutenant Governor

COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS DEPARTMENT OF ENVIRONMENTAL PROTECTION SOUTHEAST REGIONAL OFFICE 20 RIVERSIDE DRIVE, LAKEVILLE, MA 02347 508-946-2700

ELLEN ROY HERZFELDER Secretary

> EDWARD P. KUNCE Acting Commissioner

June 3, 2003

Carver Square
C/O Corporate Realty Associates Inc.
142 Crescent Street
Brockton, Massachusetts 02402

RE: Carver -- Public Water Supply Carver Square Marketplace

Source Water Assessment and Protection

Program

PWS ID #4052056

Dear Public Water Supplier,

Enclosed you will find the final Source Water Assessment and Protection (SWAP) program Report for your public water system. Thank you for meeting with SWAP staff and contributing to the SWAP report for your water supply protection area(s). The final report for your system includes:

- Discussion of Land Uses in Your Water Supply Protection Areas
- Protection Recommendations
- A Geographic Information System (GIS) Map
- Attachments Protection Factsheets and Brochures

We hope that the information on the SWAP report will be useful to you and your local officials, and we encourage you to use the report to focus and improve protection for your well(s) and community. Please visit our web site for information on other resources available to aid your protection efforts, at http://www.state.ma.us/dep/brp/dws/.

If you have any questions about this report, feel free to contact Isabel Collins at (508) 946-2726 and she will be happy to provide solutions to support your ongoing protection of Massachusetts' drinking water supply. Thank you for your interest in water supply protection.

Very truly yours,

David A. DeLorenzo
Deputy Regional Director
Bureau of Resource Protection

Cc: Board of Selectmen
Board of Health

Massachusetts Department of Environmental Protection Source Water Assessment and Protection (SWAP) Report For

Carver Square Marketplace Realty Trust

What is SWAP?

The Source Water
Assessment and Protection
(SWAP) program, established
under the federal Safe
Drinking Water Act, requires
every state to:

- Inventory land uses within the recharge areas of all public water supply sources;
- Assess the susceptibility of drinking water sources to contamination from these land uses; and
- Publicize the results to provide support for improved protection

SWAP and Water Quality

Susceptibility of a drinking water source does not imply poor water quality. Actual water quality is best reflected by the results of regular water tests.

Water suppliers protect drinking water by monitoring for more than 100 chemicals, treating water supplies, and using source protection. measures to ensure that safe water is delivered to the tap.

Prepared by the

Massachusetts Department of
Environmental Protection,
Bureau of Resource Protection
Drinking Water Program

Date Prepared: December 10, 2001

Table 1: Public Water System (PWS) Information

PWS NAME	Carver Square Marketplace Realty Trust
PWS Address	Main Street (Route 58)
City/Town	Carver, Massachusetts
PWS ID Number	4052056
Local Contact	Wayne Southworth, Certified Operator
Phone Number	508 238-4230

Well Name	Source ID#	Zone I (in feet)	IWPA (in feet)	Source Susceptibility
Well #1	4052056-01G	250	1066	High

Introduction

We are all concerned about the quality of the water we drink. Drinking water wells may be threatened by many potential sources of contamination, including septic systems, road salting, and improper disposal of hazardous materials. Citizens and local officials can work together to better protect these drinking water sources.

Purpose of this report:

This report is a planning tool to support local and state efforts to improve water supply protection. By identifying land uses within water supply protection areas that may be potential sources of contamination the assessment helps focus protection efforts on appropriate best management practices (BMPs) and drinking water source protection measures. Department of Environmental Protection (DEP) staff are available to provide information about funding and other resources that may be available to your community.

This report includes:

- 1. Description of the Water System
- 2. Discussion of Land Uses within Protection Areas
- 3. Recommendations for Protection
- 4. Attachments, including a Map of the Protection Area
- 5. Appendix

1. Description of the Water System

Carver Square Marketplace Realty Trust (the "facility") is a public water supply currently serving a commercial/retail complex consisting of restaurants, professional offices, Church, post office, gas station, convenience store, hair salon and doctors office. The facility is served by Well #1, which is located in the eastern portion of the property. Well #1 is a 6-inch diameter well drilled to a final depth of 83 feet. The well is located in a bedrock aquifer with a high vulnerability to contamination due to the absence of hydrogeologic barriers that can prevent contaminant migration. The average daily withdrawal for the well is limited to 30,000 gallons per day, based on the current Zone I of 250 feet and Interim Wellhead Protection Area (IWPA) of 1066 feet. The IWPA

What is a Protection Area?

A well's water supply protection area is the land around the well where protection activities should be focused. Each well has a Zone I protective radius and an Interim Wellhead Protection Area (IWPA).

- The Zone I is the area that should be owned or controlled by the water supplier and limited to water supply activities.
- The IWPA is the larger area that is likely to contribute water to the well.

In many instances the IWPA does not include the entire land area that could contribute water to the well. Therefore, the well may be susceptible to contamination from activities outside of the IWPA that are not identified in this report.

What is Susceptibility?

Susceptibility is a measure of a well's potential to become contaminated due to land uses and activities within the Zone I and Interim Wellhead Protection Area (IWPA).

provides an interim protection area for a water supply well when the actual recharge area has not been delineated. The actual recharge area to the well may be significantly larger or smaller than the IWPA. Please refer to the attached map of the Zone I and IWPA. The well serving the facility has no treatment at this time. For current information on monitoring results and treatment, please contact the Public Water System contact person listed above in Table 1.

2. Discussion of Land Uses in the Protection Areas

There are a number of land uses and activities within the drinking water supply protection areas that are potential sources of contamination.

Key issues include:

- 1. Inappropriate Activities in Zone Is;
- 2. Underground Storage Tanks (UST),
- 3. Septic System,
- 4. Athletic Fields and Lawn Care,
- 5. Hazardous Waste/Material Storage and Use,
- 6. Presence of Oil Contamination Sites within the IWPA. With

The overall ranking of susceptibility to contamination for the well is high, based on the presence of at least one high threat land use or activity in the IWPA, as seen in Table 2.

1. Zone I – Currently, the well does not meet DEP's restrictions, which only allow water supply related activities in Zone Is. The facility's Zone I contains parking areas, a cul-de-sac, a detention basin, and catch basins. The public water supplier does own and/or control all land encompassed by the Zone I. Please note that systems not meeting DEP Zone I requirements must get DEP approval and address Zone I issues prior to increasing water use or modifying systems.

Catch basins transport storm water from the eastern portions of the parking lot to the detention basin. Generally, as flowing storm water travels, it picks up debris and contaminants from streets, parking areas and lawns. Common potential sources of contamination include lawn chemicals, pet waste, leakage from dumpsters, household hazardous waste, and contaminants from vehicle leaks, maintenance, washing or accidents.

Recommendations:

To the extent feasible, remove all non-water supply activities from the Zone I to

Table 2: Table of Activities within the Water Supply Protection Areas

Potential Contaminant Sources	Zone I	IWPA	Threat	Comments
Underground Storage Tanks	No	Well #1	High	At town facility and 1 service station
Agriculture	No	Well#1	High	Cranberry bogs
Storm water (Parking lot, detention basin & roads)	Well #1	Well #1	Moderate	Limit road salt usage and provide drainage away from wells
Athletic fields	No	Well#1	Moderate	Fertilizer and pesticide use
Septic System	No	Well #1	Moderate	Refer to septic systems brochure in the appendix
Storage and use of hazardous materials	No	Well #1	Low	Small quantities of petroleum products, cleaning supplies, etc.
Oil Contamination Sites	No	Well #1	-	Refer to appendix

^{*-}For more information on Contaminants of Concern associated with individual facility types and land uses please see the SWAP Draft Land Use / Associated Contaminants Matrix on DEP's website - www.state.ma.us/dep/brp/dws/.

Glossary

Zone I: The area closest to a well, a 100 to 400 foot radius proportional to the well's pumping rate. To determine your Zone I radius, refer to the attached map.

IWPA: A 400 foot to $\frac{1}{2}$ mile radius around a public water supply well proportional to its pumping rate; the area DEP recommends for protection in the absence of a defined Zone II. To determine IWPA radius, refer to the attached map.

Zone II: The primary recharge area defined by a hydrogeologic study.

Aquifer: An underground water-bearing layer of permeable material that will yield water in a usable quantity to a well.

Hydrogeologic Barrien: An underground layer of impermeable material that resists penetration by water.

Recharge Area: The surface area that contributes water to a well.

- comply with DEP's Zone I requirements.
- Do not use or store pesticides, fertilizers or road salt within the Zone I.
- $\sqrt{}$ Prohibit public access to the well by locking facilities and posting signs.
- Conduct regular inspections of the Zone I and look for illegal dumping, evidence of vandalism, etc.
- √ Consider nonstructural techniques such as parking lot sweeping to reduce the amount
 of potential contaminants in storm water runoff. Sediments should be removed from
 detention basin as necessary. To learn more refer to the Storm Water Management
 Handbook, Volume 1 and 2 for information on BMPs and documents available at
 http://www.state.ma.us/dep/brp/ww/wwpubs.htm.
- 2. Underground Storage Tanks There are several facilities with underground storage tanks containing gasoline and diesel fuel within the IWPA. There are three (3) UST's at Carver Square Auto Services, located approximately 750 feet west of Well #1. The Town of Carver has two (2) UST's located approximately 900 feet west northwest of Well #1. All the UST's at both facilities have double wall tanks that have cathodic protection. If managed improperly, USTs can be potential sources of contamination due to leaks or spills of the chemicals they store.
- Recommendation:

 √ Work with the local fire department to have the UST's in your IWPA inspected for compliance with local code requirements. Any modifications to the UST must be accomplished in a manner consistent with Massachusetts's plumbing, building, and fire code requirements.
- 3. Septic System All of the facility's septic systems are located within the IWPA. The closest leaching field is located approximately 300 the southwest of Well #1. Recommendations:
- √ Educate tenants on private septic systems about using cleaning compounds that are safe for the septic system, and on proper disposal practices, i.e. only sanitary waste in the septic system.
- √ Tenants should dispose of used oil, antifreeze, paints, and other household chemicals properly-not in septic systems. Information on septic systems can be found at Massachusetts DEP website http://www.state.ma.us/dep/brp/files/yoursyst.htm.
- √ Septic system components should be located, inspected, and maintained on a regular basis. Refer to the attachments for more information regarding septic systems.

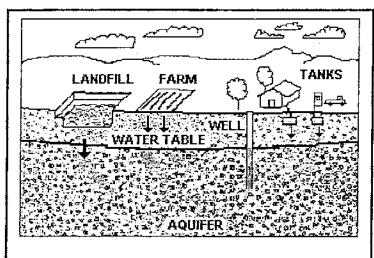


Figure 1: Example of how a well could become contaminated by different land uses and activities.

4. Athletic Fields and facility Lawn Care - The facilities lawn area and towns athletic Fields are located within the IWPA. Over application of pesticides and fertilizers on lawns is a potential source of contamination to the water supply.

Recommendations:

- √ Work with local officials to develop a turf management program for athletic playing fields and municipal recreation areas. For more information on turf management, refer to: http://www.extension.umn.edu/distribution/horticulture/DG5726.html
- √ Use best management practices (BMPs) for applying, handling, and storage of pesticides, herbicides, and fertilizers (refer to attachments on fertilizer and pesticide use). Information on environmentally sound lawn care practices is available from the Massachusetts Department of Food and Agriculture Pesticide Bureau's at http://www.massdfa.org.
- Storage, Use and Handling of Oil/Hazardous Materials in IWPA - Within building #2 is a maintenance storage area

For More Information:

Contact Isabel Collins in DEP's Lakeville office at (508) 946-2726 for more information and for assistance in improving current protection measures.

More information relating to drinking water and source protection is available on the Drinking Water Program web site at:

www.state.ma.us/dep/brp/dws/

Additional Documents:

To help with source protection efforts, more information is available by request or online at www.state.ma.us/dep/brp/dws, including:

- Water Supply Protection
 Guidance Materials such as
 model regulations, Best
 Management Practice
 information, and general
 water supply protection
 information.
- 2. MA DEP SWAP Strategy
- 3. Land Use Pollution Potential Matrix
- 4. Draft Land/Associated Contaminants Matrix

Copies of this assessment have been made available to the public water supplier, town boards, and the local media that contains small quantities of gasoline, oil, paints and cleaning supplies. The oil/hazardous material storage (e.g. gasoline, paint, petroleum products, cleaning supplies, etc.) poses a potential threat to the well due to its proximity and potential for accidental release. Additionally, within the IWPA are municipal garages.

Recommendations:

- √ Provide containment and exercise caution when using and storing these products.
- Implement standard operating procedures regarding proper storage, use and disposal of hazardous materials. To learn more, see the hazardous materials guidance manual at www.state.ma.us/dep/bwp/dhm/dhmpubs.html.
- ✓ Educate tenants and staff on proper hazardous material use, disposal, emergency response, and best management practices; include custodial staff, and certified operator. Post labels as appropriate on raw materials and hazardous waste.
- √ Work with the town to incorporate best management practices for stormwater, salts, and road-building materials at the municipal garages. For more information, refer to: http://www.epa.gov/region1/steward/neeat/munis1.html
- 6. Presence of Oil Contamination Site within the IWPA The IWPA for Well #1 contains DEP Tier Classified Oil and/or Hazardous Material Release Sites indicated on the map as Release Tracking Number 4-0000612 and 4-0012848. Refer to the attached map and Appendix for more information.

Recommendation:

Monitor progress on any ongoing remedial action conducted for the known oil and/or Hazardous Material Release Sites.

Other activities noted during the assessment: Approximately 17 percent of the wellhead protection area is comprised of cranberry bogs which are located northeast of the well. As is the case for most other crops, the commercial production of cranberries usually requires input of fertilizer and pesticides. Utilization of best management practices (BMPs) as planned and described in an established conservation farm plan can ensure that agricultural system will uphold the integrity of the surrounding natural resources.

Recommendation:

- Encourage Cranberry bog owner/operator to:
 - 1. Obtain and follow an approved USDA, Natural Resource Conservation Service Conservation Farm Plan.
 - 2. Maintain a pesticide license or certification with the Massachusetts Department of Food and Agriculture including all applicable training and recertification courses.

Implementing the following recommendations will reduce the system's susceptibility to contamination.

3. Protection Recommendations

Implementing protection measures and best management practices (BMPs) will reduce the well's susceptibility to contamination. Carver Square Marketplace Realty Trust should review and adopt the key recommendations above and the following:

Zone I:

- √ Keep non-water supply activities out of the Zone I.
- ✓ Prohibit public access to the well by locking facilities, gating roads, and posting signs.

Training and Education:

- √ Train staff on proper hazardous material use, disposal, emergency response, and best management practices; include custodial staff, groundskeepers, certified operator, and food preparation staff. Post labels as appropriate on raw materials and hazardous waste.
- $\sqrt{}$ Post drinking water protection area signs at key visibility locations.
- √ Work with your community to ensure that stormwater runoff is directed away from the well and is treated according to DEP guidance.

Facilities Management:

√ Implement Best Management Practices (BMPs) for the use of fertilizer, herbicides and pesticides on facility property.

Planning:

- √ Work with local officials in Carver to include the Carver Square Marketplace IWPA in Aquifer Protection District Bylaws and to assist you in improving protection.
- √ Have a plan to address short-term water shortages and long-term water demands. Keep the phone number of a bottled water company readily available.
- ✓ Supplement the SWAP assessment with additional local information and incorporate it into water supply educational efforts. Use a land use inventory to assist in setting priorities, focusing inspections, and creating educational activities.

Funding:

The Department's Wellhead Protection Grant Program provides funds to assist public water suppliers in addressing Wellhead protection through local projects. Protection recommendations discussed in this document may be eligible for funding under the "Wellhead Protection Grant Program". For additional information, please refer to the attached program fact sheet. Please note: each program year the Department posts a new Request for Response for the Grant program (RFR). Other funding opportunities are described in "Grant and Loan Programs: Opportunities for Watershed Protection, Planning and Implementation" at http://www.state.ma.us/dep/brp/mf/files/glprgm.pdf.

These recommendations are only part of your ongoing local drinking water source protection. Citizens and community officials should use this SWAP report to spur discussion of local drinking water protection measures.

4. Attachments

- Map of the Public Water Supply (PWS) Protection Area.
- Recommended Source Protection Measures Fact sheet
- Your Septic System Brochure
- Pesticide and Fertilizer Use Fact sheets
- Wellhead Protection Grant Program Fact Sheet
- Source Protection Sign Order Form

5. Appendix

Table of DEP Regulated Chapter 21E Hazardous Materials Release Sites

DEP's datalayer depicting oil and/or hazardous material (OHM) sites is a statewide point data set that contains the approximate location of known sources of contamination that have been both reported and classified under Chapter 21E of the Massachusetts General Laws. Location types presented in the layer include the approximate center of the site, the center of the building on the property where the release occurred, the source of contamination, or the location of an on-site monitoring well. Although this assessment identifies OHM sites near the source of your drinking water, the risks to the source posed by each site may be different. The kind of contaminant and the local geology may have an effect on whether the site poses an actual or potential threat to the source.

The DEP's Chapter 21E program relies on licensed site professionals (LSPs) to oversee cleanups at most sites, while the DEP's Bureau of Waste Site Cleanup (BWSC) program retains oversight at the most serious sites. This privatized program obliges potentially responsible parties and LSPs to comply with DEP regulations (the Massachusetts Contingency Plan – MCP), which require that sites within drinking water source protection areas be cleaned up to drinking water standards.

For more information about the state's OHM site cleanup process to which these sites are subject and how this complements the drinking water protection program, please visit the BWSC web page at http://www.state.ma.us/dep/bwsc. You may obtain site -specific information two ways: by using the BWSC Searchable Sites database at http://:www.state.ma.us/dep/bwsc/sitellst.htm, or you may visit the DEP regional office and review the site file. These files contain more detailed information, including cleanup status, site history, contamination levels, maps, correspondence and investigation reports, however you must call the regional office in order to schedule an appointment to view the file.

The table below contains the list of Tier Classified oil and/or Hazardous Material Release Sites that are located within your drinking water source protection area.

Table 1: Bureau of Waste Site Cleanup Tier Classified Oil and/or Hazardous Material Release Sites (Chapter 21E Sites) - Listed by Release Tracking Number (RTN)

RTN	Release Site Address	Town	Contaminant Type
4-0000612	118 Main Street	Carver	Oi1
4-0012848	132 Main Street	Carver	Hazardous Materials

For more location information, please see the attached map. The map lists the release sites by RTN.

Carver Sq. Marketplace Realty Trust

CARVER

Source Water Assessment Program

Source Water Assessment Program							
	LEGEND Data Sources						
				SOLID WASTE (SW) FACILITIES: MA DEP-DSW, 1 25,000 Includes only SW facilities regulated since 1971			
	MA Towns	Land Use	;	SW facility boundaries were compiled onto USGS quads and automated by the DEP-Division of Solid Waste (DSW)			
	IWPA	1 1	Crop Land Pasture	MA DEP APPROVED 20NE II: MA DEP DWP, 1:25,000. As stated to 310 CMR 22:02; "that area of an aquifer which contributes water to a well under the most severe pumping and eacharge conditions that can be realistically			
	Zone I	3	Forest	articipated." Zone II boundaries are automated from source maps based on USGS 1:25,000 topographic manuscripts. Source maps are provided by consultants in either analog or digital and are approved by DEP DWP prior to			
·	Zone il	4	Non-Forested Wetland	putomation. Zone II data is updated on a quarterly basis.			
		5	Mining	BATERIM WEILLEE AD PROTECTION AREAS (IWPA): MA DEP DWP, 1.25 000. Variable width IWPA'S: represent a public water supply (PWS) source's wellhead protection area until a Zooc II is approved by DEP DWP, IWPA's are generated using DEP's PWS datalayer and pumping rate information provided by DEP DWP. IWPA			
<u> </u>	Zone A	6	Open Land	WHA 3 are generated using DEP F W Santeauyer and pumping interimentation products of product of the width is enducted as; WPA radius = (3.2 squirping rate in gailons per minute) = 400, with a maximum radius of U2 mile (default) for community supplies. Non Transient Non Community (NTXC) supplies have a default [WPA]			
j	Zone C	7	Participation Rec	0.2 mist (senart) for community supplies. You contain the property of assessing pumping rates for all sources with default TWPA radius of 500 feet. DEP DWP is currently in the process of assessing pumping rates for all sources with default TWPA radii. As pumping rates are			
	Solid Waste Landfill	8	Spectator Rec.	assessed, default roth are being replaced by calculated radii.			
17	Protected Open Space	9	Water-based Rec.	SURFACE WATER SUPPLY PROTECTION AREA (ZONE A) MADEP, 1:25,000. Zone A: represents a) the land area between the surface water source (SWS) and the upper boundary of the bank, b) the land area within a 400°			
Divore	& Streams	10	Multi-Fam. Res.	bacral distance from the upper boundary of the bank of a Class A SWS, and c) the tand mea within a 200 lateral distance from the upper boundary of the bank of a tributary or associated surface water body. Zone A data is			
Rivers	Stream	11	High Density Res.	guicemed by buffering MussGIS 1:25,000 hydrography data according to the above enterior			
	Intermittent Stream	12	Medium Dens, Res	SURFACE WATER SUPPLY PROTECTION AREA (ZONE C): MA DEP DWP, 1:25,000, A Zone C represents the laud area not designated as Zone A or B within the watershed of a Class A surface water source, as defined in			
il	mematera securi	13	Low Dena, Rea	314 CMR 4.05(3)(a). Zone C features are generated by extracting MassGIS subdrainage basin polygons that uportabure to a Class A surface water source.			
	 Transmission Lines 		Salt Water Wetland	1 HYDROGRAPHY, USGS/MassGIS, 1:25,000/1:100,000 (enhanced). 1 25,000 hydro was generated using USGS			
·	++ Railroads	15	Commercial Industrial	1.25,500 and 1:100,000 DEG data and enhanced with linework digitared from 1.25,000 USGS topographic quadrangles. 1997. 1:100,000 hydro generated and modified from USGS 1:100,000 DEG data.			
Water	Supplies	17	Orban Open	NONFORESTED WETLANDS: UMass Amharst Resource Magning Procest (RMP) (Mass GIS, 1/25,000). Extracted			
	Groundwater	18	Transpertation	from the 1971-1984 Land Use datalayer which was photointerpreted by UMass RMP from 1:25,000 summer CIR photography. Interpretation was not done in stereo. Includes nonforested freshwater wedlands and salt marsies.			
•	Surface Water	19	Waste Disocsai	Forested wetlands, which make up the majority of Massachusetts wetlands, were not included.			
0	Distribution Reservoir	20	Water	TRAINS AND TRAINSENES: USGSMassGIS, 1:100,000 Generalized and modified USGS DLG data Train applicated by Central Transportation Planning (CTP)			
0	Non-Transient Non-Community Transient Non-Community	21	Woody Perennial	POLITICAL BOUNDARIES: MassGISUSGS, 1:25:900 Except for the constitue, this datainver was digatized by MassGIS from my ar USGS quada. The constitue was taken from the USGS 1:100,000 Hydrography DLG files			
			and Storage Tanks	PUBLIC WATER SUPPLIES (PWS), MA DEP DWP, Located by US EPA and DEP DWP using soveral			
3	id Water Discharges Car Wash	Active		I mathedotogies, including DGPS, USGS topographic map interpolation and photo interpretation. This data is I modated quarterly.			
i 3	Industrial Discharge			LAND USE: UMass Araherst Resource Mapping Project (RMP//MassGiS, 125,000, 23 land use entegories,			
	Laundremet	Boreau of Waste Prevention Regulated Facilities		photointerpreted from 1985/1990 summer CIR serial photography.			
3	Caher		ty with Groundwater	UNDERGROUND STORAGE TANKS (UST), US EPAIMA DEP Locations were compiled through a combination of address matching and differential GPS—Attribute information from the MA Department of Public Safety 3			
•	Reclamation (Cleanup)		arge Permit (GWO) ty with Air Operating	Division of Site Protection.			
; →	Samitary Discharge	D SZAZDO		OISCHARGE TO GROUNDWATER PERMIT LOCATIONS MAIDER Division of Water Pollubon Control (DWPC), 1:25,000. Coordinate data mixed from DEP-DWPC permit applications were compilled ceto USGS quads			
9	Geowell			and degrazed.			
	Tier Classified Oil or		Quantity Generator of dous Waste (LQG)	PROFECTED AND RECREATIONAL OPEN SPACE (OS). MA ROEL Missolls, 1:5,000 Contains Faderal. Sure, sounty, municipal, non-profit and private conservation land and extremental facilities. Bounday aformation is comprised by local volunteers and EOEA land holding agencies coordinated and automated by MassiGIS.			
Haza Sites	rdous Material Release	⊕ Hazar	dous Waste Treatment,	This databases is currently under development and constantly updated.			
*	l' .		ge and/or Disposal Facility F)	BLACK AND WHITE DIGITAL ORTHOPHOTO (DOQ) (MAGERY: EDEA MASSGIS, 1,5000 MassGIS 1,5000 DOQ unages were developed to 0.5 moter base resolution. These images meet or exceed the National Mag			
			rdous Waste Recycler	Accinery Standards (NMAS) to the sevent data 99% of the well defined features fall within 0 5mm of their true position on the ground at the nominal output scale of 1:5000 (2.5 meters on the ground). Additionally, the maximum			
· .	NPDES Major Discharge Points		K)	displacement of well defined features is less than 5 meters. The 0.5 meter base DOQ images were resampled to 1 meter resolution. Dates of these images range from 1992 - 1999.			
*	NPDES Major Discharge			NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM: DEP GIS Program - Major discharge points			
This triep i	is for illustrative proposes only. It tepre se. There are other important patient re-	sents the best av	milable statewide data for a	permitted under the National Pollutant Discharge Elimination system (NPDES). This spatial data has not been quality controlled through field ventication and is subject to revision. This is currently a draft data set			
that are no	x shown on this map because the digital	SESTER ONE COL	not exest. If you have	DEPITIER CLASSIFIED CHAPTER 21E (OIL OR HAZARDOUS MATERIAL) RELEASE SITES (MGL 221E):			
chestings soon and of the form mount of the links former country transfer or (511), 11-11-11-11				DEP CISIBWSC, 1:25,000 Interpreted from source maps and textual information from DEP BWSC files. When file information was inadequate, DEP technical staff were contacted to locate the site, through knowledge gamed in			
]	Map Scale	1.5000		the course of their professional permittes. Automation was conducted using an acreen digitaling technique, incorporating digital (1.25.00%) USGS topographic images and (1.5.000%) digital onhaphoral images as a base			
500	nap sedio	500	500 Fee	of DEP TWP MAZOR PACILITIES MAIDEP. Bureau of Waste Prevention, surveys, see plans, locus maps from			
500	<u> </u>	•	350 100	EL DEP decords: GPS field weithcodons superposition staff knowledge.			
		==5/;- (;-	<i>\$</i>				
		定記述	公共发系统	· · · · · · · · · · · · · · · · · · ·			
1	Table 1 - An Electric Act a Statement Act a St						
1		.,					

scellins - February 21, 2003

Locator Map

ARGEO PAUL CELLUCCI Governor

JANE SWIFT Lieutenant Governor

COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS DEPARTMENT OF ENVIRONMENTAL PROTECTION

20 RIVERSIDE DRIVE, LAKEVILLE, MA 02347 508-946-2700

BOB DURAND Secretary

LAUREN A. LISS Commissioner

May 26, 2000

Mr. George Baldwin Corporate Realty Associates Inc. 142 Crescent Street Brockton, Massachusetts 02402

RE: CARVER--Public Water Supply CARVER SQUARE MARKETPLACE Sanitary Survey PWS ID #4052056

Dear Mr. Baldwin:

On May 5, 2000, a sanitary survey of the above-referenced public water system was conducted by the Department of Environmental Protection (the Department). A sanitary survey is an on-site review of the water sources, facilities, equipment, operation, and maintenance of a public water system to evaluate its ability to produce and distribute safe drinking water. Any deficiencies with regard to Department standards, guidelines, and policies, or violations of the Massachusetts Drinking Water Regulations, which were discovered in the course of this survey, are listed in the enclosed sanitary survey report.

Any person who owns or operates a public water system is responsible for the safety of the system under his or her control. If deficiencies have been noted, you should proceed to take the corrective actions specified in the sanitary survey without delay. Please note that you may receive a Notice of Noncompliance or Order with respect to this sanitary survey under separate cover for any deficiencies or violations listed.

Please contact Paul Jankauskas at (508) 946-2805, if you have any questions concerning this matter.

Sincerely

Jeffley E. Gould, Chief Buzzards Bay Watershed

G/PJ/ka

Enclosure

cc:

Wayne Southworth 108 Howard Street South Easton, Massachusetts 02375

Board of Health Post Office Box 123 Carver, Massachusetts 02330

This information is available in alternate format by calling our ADA Coordinator at (617) 574-6872.

GENERAL COMMENTS, RECOMMENDATIONS AND REQUIRED CORRECTIVE ACTIONS

SANITARY SURVEY

CARVER SQUARE MARKETPLACE REALTY TRUST CARVER, MA PWS #4052056

FACILITY INFORMATION:

- The Carver Square Marketplace Realty Trust is a public water supply currently serving a population of greater than 100 persons per day. The system is classified as a Nontransient Noncommunity public water supply.
- 2. The system is composed of several lots containing commercial/retail businesses, restaurants, professional offices, a bank, a church, a post office, and a gas station, which includes a convenience store and a take-out Dunkin Donuts.

SOURCE:

- 1. The system is supplied by one bedrock well. The well is 6 inches in diameter and 83 feet deep. The well is located in a pump house. There have been no changes inside the pump house since the last sanitary survey, which was conducted on August 23, 1995.
- 2. A sampling location for routine monitoring is provided prior to the storage tank in the pump house. The current sample tap consists of a standard hose bib. As stated in the last sanitary survey, the standard hose bib should be replaced with a smooth-nosed sample tap.
- 3. The vent pipe for the well is not properly screened.
- 4. The approved Zone 1 distance is 250 feet, and the approved IWPA (Zone 2) distance is 1066 feet.
- 5. The Department requires that only water supply related activities are to occur within the Zone 1. The Zone 1 currently contains a paved cul-de-sac area, several trash dumpsters, and a water fill station for fire department vehicles. In addition, several storm water catch basins in the vicinity drain to a surface water body inside the Zone 1. Therefore the well location does not provide for the required protective radius.

DISTRIBUTION SYSTEM:

1. A cross connection survey was recently conducted by a certified cross connection surveyor, and an approved cross connection program plan is on file at the Department.

Association, 6 Prim Road, Post Office Box 622, Colchester, Vermont 05446, (802) 660-4988. The group's primary aim is to assist the small system operator to provide an adequate supply of quality water to rural residents.

In addition, the Rural Housing Improvement Program is a non-profit organization that provides service to rural low-income communities throughout the Northeast to ensure access to adequate and affordable drinking water supplies. This group is located at 218 Central Street, Box 429, Winchendon, Massachusetts 01475-0429, (508) 297-1376.

Other useful sources of information relative to general water works practice and operator certification is as follows:

- 1. New England Water Works Association, 42-A Dilla Street, Milford, MA 01757-1104, (508) 478-6996.
- Massachusetts Water Works Association, contact George Allan, P.O. Box 4056, Westford, MA 01886, (508) 692-0199.
- 3. Plymouth County Water Works Association, contact Carl Hillstrom, Duxbury Water Department, 878 Tremont Street, Duxbury, MA 02332 (508) 934-6586.

APPENDIX H IRA STATUS REPORT AND PHASE V - FORMER CARMICHAEL'S MOBIL

IMMEDIATE RESPONSE ACTION STATUS REPORT AND PHASE V - OPERATION, MAINTENANCE, AND/OR MONITORING REPORT

Former Carmichael's Mobil 118 Main Street Carver, Massachusetts 02330

> RTN No. 4-11188 (NRG Ref. No. 101.3)

September 26, 2002

Prepared for:

Carver Square Auto Services, Inc.
One Roberts Road
Plymouth, Massachusetts 02360

Prepared by:

Norfolk Ram Group, LLC One Roberts Road Plymouth, Massachusetts 02360

TABLE OF CONTENTS

1.0	INTRO	ODUCTION	1-1
2.0		ECTION AND MONITORING REPORT	2-1
	2.1	General Operating Procedures	
	2.2	Significant Modifications Of Inspection And/Or Monitoring Program Conditions Or Problems Affecting The Performance Of The Remedial	2-2
	2.3	Actions	2-2
	2.4	Measures Taken To Correct Conditions Which Are Affecting The	
		Performance Of The Remedial Actions	2-3
	2.5	Results Of Sampling Analysis And Screening Conducted As Part	
		Of The Inspection And/Or Monitoring Program	2-3
	2.6	Name, License Number, Signature, And Seal Of The Licensed Site	
		Professional	2-3
3.0	STAT	TUS OF ASSESSMENT AND/OR REMEDIAL ACTIONS	3-1
	3.1	Monthly Groundwater and Non-Aqueous Phase Liquid Gauging	
		Results	3-1
		3.1.1 Groundwater	3-1
		3.1.2 Non-aqueous Phase Liquid	3-1
	3.2	Quarterly Groundwater Sampling	3-3
		3.2.1 Groundwater Analytical Results	3-3
	3.3	Quality Assurance/Quality Control Results	చ-చ
		3.3.1 Trip Blanks	3-4
4.0	SIGN	NIFICANT NEW SITE INFORMATION OR DATA	4-1
5.0	DET	AILS OF/OR PLANS FOR THE MANAGEMENT OF REMEDIATION	E 4
		STE, REMEDIAL WASTEWATER AND/OR REMEDIAL ADDITIVES	I−C 1 =
	5.1	Air Emissions/Vapor Phase Carbon	۱-C
	5.2	Purged Groundwater, Process Water and Product	
	5.3	Soil	5- 1
6.0	4OM	NITORING DATA RELATED TO THE OPERATION OF REMEDIAL	6 1
		TEMS	۱ -0
	6.1	Soil Vapor Extraction/Air Sparging Remedial System	0-1
		6.1.1 Soil Vapor Extraction/Air Sparging Influent and Effluent	ຄ1
		Air Sampling	0-1 6-1
	6.2	Mass Removal	0-1 7-1
7.0		1EDY OPERATION STATUS	; - 71
	7.1	Performance Standards For Remedy Operation Status	1= 7-0
	7.2	Termination of Remedy Operation Status	(-2
8.0	OTH	IER INFORMATION REQUIRED BY THE DEPARTMENT OF TRONMENTAL PROTECTION AS PART OF THE IRA APPROVAL	81
	ENV	TATIONS	q_۰ م_و
9.0	LIMN	TATIONS	

LIST OF APPENDICES

APPENDIX A FIGURES

Figure 1-1 Site Locus Map

Figure 2-1 Site Map

Figure 6-1 Cumulative Mass Removal vs. Time

APPENDIX B TABLE

Table 6-1 Petroleum Mass Removal Rate and Cumulative

Mass Removal vs. Time

APPENDIX C GROUNDWATER ANALYTICAL SUMMARY TABLES AND

GRAPHS

APPENDIX D LABORATORY ANALYTICAL DATA PACKAGES

1.0 INTRODUCTION

On behalf of Carver Square Auto Services, Inc. (Carver Square), the Norfolk Ram Group, (NRG) has prepared this *Immediate Response Action Status Report* and *Phase V - Operation, Maintenance, and/or Monitoring Report* (the Phase V Report), pursuant to 310 CMR 40.0425 and 40.0890, respectively, in connection with the disposal site located at the former Carmichael's Mobil property located at 118 Main Street in Carver, Massachusetts (the "Site"). A Site Locus Map is attached as Figure 1-1, Appendix A. Pursuant to 310 CMR 40.0891(1) the provisions of a Phase V Report apply to disposal sites where Phase IV response actions have been conducted, a Response Action Outcome ("RAO") has not yet been achieved, and operation, maintenance, and/or monitoring of the Comprehensive Remedial Action (CRA) is necessary to achieve a RAO.

The Massachusetts Department of Environmental Protection (the DEP) has assigned Release Tracking Number (RTN) 4-11188 to the release. An Immediate Response Action (IRA) is required at the Site due to a release of oil and/or hazardous material (OHM) to the environment, where groundwater concentrations are above groundwater Reporting Category RCGW-1 (RCGW-1) levels within 500 feet of a private water well. An IRA Plan was submitted to the DEP on April 21, 1997 and IRA Status Reports have been submitted every 6 months thereafter. An Immediate Response Action Transmittal Form (BWSC-105) and a Comprehensive Response Action Transmittal Form (BWSC-108) are being submitted to the DEP concurrently with this report.

Pursuant to 310 CMR 40.0871, the February 1991 Phase IV Implementation of the Approved Remedial Response Alternative Report (the Phase IV Report) by Green Mountain Environmental Services, and the April 21, 1997 Immediate Response Action Plan, (IRA Plan) by Norfolk Ram Group (then RAM Environmental, LLC), detailed the design, construction and implementation of the CRA alternative selected in the January 1991 Phase III Development of Remedial Response Alternatives and the Final Remedial Response Action Plan (the Phase III Report) by Green Mountain Environmental Services. As set forth in the Phase III Report and the IRA Plan, on behalf of Carver Square, Green Mountain Environmental Services and Norfolk Ram Group recommended a groundwater monitoring program and a soil vapor extraction/air sparging (SVE/AS) remedial system as the CRA to address OHM impact at the disposal site.

This report summarizes the response actions conducted at the disposal site during the reporting period between February 23, 2002 and September 23, 2002, (the "reporting period"), as set forth below:

- · the operation, maintenance and monitoring of the SVE/AS remedial system;
- quarterly groundwater sampling; and
- monthly groundwater and surface water elevation measurements, and nonaqueous phase liquid (NAPL) thickness measurements.

The results of the response actions conducted are set forth below.

2.0 INSPECTION AND MONITORING REPORT

Pursuant to 310 CMR 40.0892(1) through (6), Phase V inspections and monitoring activities conducted at the Site during the reporting period are set forth below.

2.1 General Operating Procedures

Pursuant to 310 CMR 40.0892(1), NRG, performs monthly operation and maintenance on the SVE/AS remedial equipment, and monitoring of groundwater elevations, as set forth below:

- Change oil on all positive displacement blowers;
- Grease bearings on all positive displacement blowers;
- Check and/or adjust belt tension on drive shives;
- Replace air filters as required, but not more than monthly;
- Clean basket strainers;
- Clean and check the operation of float switches;
- Record the runtime for remedial equipment;
- Measure and record the operational data (vacuum, pressure, flow);
- Measure the removal efficiency of SVE off-gas consistent with 310 CMR 40.0049(5) and the DEP's Off-Gas Treatment of Point Source Remedial Air Emissions (WSC-94-150);
- Measure and record groundwater elevations and NAPL thicknesses, if present, in monitoring wells, MW-4, MW-8, MW-10, MW-14, MW-17, and MW-19, as indicated on Figure 2-1, Appendix A; and

A master control panel operates the remedial equipment and alerts NRG via facsimile if key components of the system shutdown. If key components of the system shut down, the entire SVE/AS system is automatically shut down. NRG responds to shutdowns upon receiving notification.

NRG performs quarterly groundwater monitoring and sampling, that generally consists of the following tasks:

- Purge and sample groundwater from monitoring wells MW-4, MW-8, MW-10, MW-14, MW-17, and MW-19;
- Submit groundwater samples collected from MW-4, MW-8, MW-10, MW-14, MW-17, and MW-19 for volatile petroleum hydrocarbons (VPH) with target volatile organic compounds (VOCs) analyses;
- Collect trip blank and duplicate samples and submit them for laboratory analysis consistent with samples for Quality Assurance/Quality Control (QA/QC) purposes.

2.2 Significant Modifications Of Inspection And/Or Monitoring Program

Pursuant to 310 CMR 40.0892(2), a description of any significant modifications to the Inspection and/or Monitoring Program (IMP) made since the submission of the preceding Inspection and Monitoring Report is set forth below.

No significant modifications have been made to the IMP. This is the third Phase V Report submitted to the DEP in connection with RTN 4-11188.

2.3 Conditions Or Problems Affecting The Performance Of The Remedial Actions

Pursuant to 310 CMR 40.0892(3), a description of any conditions or problems noted during the inspection and/or monitoring period, which are or may be affecting the performance of the remedial actions, are set forth below.

High ambient outside temperature caused the SVE/AS remedial trailer to achieve a high inside temperature on several occasions, triggering an automatic shutdown of the system. Heavy rainfalls resulted in the SVE/AS system moisture separator registering a high water level, on several occasions, triggering an automatic shutdown of the system. These events are further discussed in Section 2.4.

Measurements of air flow at several sparge wells indicated well blockage, resulting in sub-optimal performance of the air sparging system.

2.4 Measures Taken To Correct Conditions Which Are Affecting The Performance Of The Remedial Actions

Pursuant to 310 CMR 40.0892(4), a description of any measures taken to correct the condition, that are affecting the performance of the remedial actions are set forth below.

On July 3, July 9, August 18 and August 27,2002, high outside ambient temperatures caused the SVE/AS remedial trailer to achieve a high inside temperature, triggering an automatic shutdown of the system. Upon inspection by NRG the system was restarted after each of these events.

On April 11, April 18, April 24 and June 11, 2002, heavy rains caused the moisture separator to fill, triggering the high water level shutoff alarm which automatically shuts down the system. Upon inspection by NRG the moisture separator was drained, and the system restarted after each of these events. Worn AS belts were replaced during a July 9, 2002 maintenance visit.

On March 22, 2002, several of the sparge wells were unclogged using compressed air. Subsequent measurements indicated restoration of flow to these wells.

2.5 Results Of Sampling Analysis And Screening Conducted As Part Of The Inspection And/Or Monitoring Program

Pursuant to 310 CMR 40.0892 (5), the results of the sampling analyses and screening, conducted as part of the IMP, are set forth in Sections 3.0 and 6.0.

2.6 Name, License Number, Signature, And Seal Of The Licensed Site Professional

Pursuant to 310 CMR 40.0892(6), the name, license number and seal of the Licensed Site Professional (LSP) are set forth below.

The LSP-of-record for the disposal site is set forth on forms BWSC-105 and BWSC-108, being submitted concurrently with the IRA Status Report and the Phase V Report.

3.0 STATUS OF ASSESSMENT AND/OR REMEDIAL ACTIONS

Pursuant to 310 CMR 40.0425(3), the status of the assessment and/or remedial actions conducted at the Site is set forth below.

3.1 Monthly Groundwater and Non-Aqueous Phase Liquid Gauging Results

Groundwater and LNAPL elevation measurements are collected monthly utilizing an oil-water interface probe, and LNAPL thickness, if present, is confirmed with a disposable bailer. NRG conducted monthly depth to groundwater and NAPL thickness gauging of monitoring wells MW-4, MW-8, MW-10, MW-14, MW-17, and MW-19 during this reporting period. Groundwater monitoring well locations are indicated on Figure 2-1, Appendix A.

3.1.1 Groundwater

Groundwater elevations at the Site typically fluctuate seasonally between 5 and 13.5 feet below grade. During this reporting period, groundwater elevations generally decreased between Marchand August, Groundwater elevations have fluctuated since the startup of the SVE/AS system and are presented in tabular and graphical form as Appendix C. Based upon the August 27, 2002 groundwater elevations, the inferred groundwater flow direction was to the east, consistent with historical trends.

3.1.2 Non-aqueous Phase Liquid

NAPL was detected in monitoring well MW-17 on September 4, 1998 at a thickness of approximately 0.57 inches. NAPL has not been detected in monitoring well MW-17 before or since September 4, 1998. NAPL has not been observed by NRG in monitoring wells MW-4, MW-8, MW-10, MW-14, or MW-19.

3.2 Quarterly Groundwater Sampling

NRG conducted quarterly groundwater sampling at the Site in February, May and August 2002 as set forth below. Monitoring well locations are indicated on Figure 2-1, Appendix A.

3.2.1 Groundwater Analytical Results

Consistent with the IRA Plan, on February 13, May 28, and August 27, 2002, quarterly groundwater samples were collected from monitoring wells MW-4, MW-8, MW-10, MW-14, MW-17, and MW-19 at the locations indicated on Figure 2-1, Appendix A.

Each monitoring well was purged five well volumes prior to sample collection. Upon completion of well purging, groundwater samples were collected with dedicated polyethylene bailers and submitted to a laboratory for VPH with VOCs analyses. The target VOCs included: benzene, toluene, ethylbenzene, xylenes (BTEX), methyl tertiary-butyl ether (MTBE), and naphthalene. Analytical summary tables and graphs are attached as Appendix C, and the laboratory analytical data packages are attached as Appendix D.

VPH and target VOCs detected in groundwater in the February, May and August 2002. groundwater sampling events are summarized in the tables in Appendix C. The groundwater analytical results were compared to the Method 1 GW-1 Groundwater Cleanup Standards, and the monitoring wells, which exceeded these standards, are set forth below.

- VPH aliphatic and aromatic hydrocarbon fractions, benzene, ethylbenzene and naphthalene were detected at concentrations exceeding the Method 1GW-1/2 Groundwater Standards in groundwater from MW-8 during the February 13, 2002 groundwater sampling round; and
- VPH C₅-C₈ aliphatic and C₉-C₁₀ aromatic hydrocarbon fractions, ethylbenzene and naphthalene were detected at concentrations exceeding the Method 1GW-1/2 Groundwater Standards in groundwater from MW-8 during the May 28 and August 27, 2002 groundwater sampling rounds

The laboratory analytical results are tabulated with the historical groundwater analytical results and presented graphically in Appendix C. The laboratory analytical data packages for the groundwater sampling events conducted during this reporting period are attached as Appendix D.

3.3 Quality Assurance/Quality Control Results

The results of NRG's QA/QC program are summarized in the following sections.

3.3.1 Trip Blanks

Trip blanks accompany samples to the laboratory and are only submitted for volatile analyses. Trip blanks (RAM-QA/QC-100) for the February, May and August 2002 quarterly sampling event were submitted to the analytical laboratory for VPH with target VOCs.analysis. No target analytes were detected in the trip blanks.

3.3.2 Duplicate Samples

NRG collected a sample duplicate (RAM-QA/QC-500) from MW-8 during the August 28, 2002 quarterly groundwater sampling event. The relative percent differences in the concentrations of constituents detected in the sample and the duplicate sample were within 10% for all analytes except C9 to C12 aliphatic hydrocarbon fractions, where the relative percent difference was 33%.

3.3.3 Surrogate Recovery

NRG reviewed the surrogate recoveries for each of the groundwater samples collected from the Site. Surrogate recoveries were all within acceptable limits.

3.3.4 Laboratory Quality Control Evaluation

NRG compared the format of the laboratory analytical data sheets to the Licensed Site Professional Association's (LSPA" VPH and EPH: Required Content of Laboratory Reports, revised on September 18, 1998. The analytical data sheets were prepared consistent with the LSPA's document, with the exception that each data sheet was not signed by a responsible person at the laboratory. According to a representative at the analytical laboratory (Groundwater Analytical), a signed cover letter was provided to serve the same purpose. The cover letter was signed "under the pains and penalties of perjury" by a "responsible person," Jonathan R. Sanford, President of Groundwater Analytical.

The laboratory analytical data package includes a statement regarding the laboratory's QA/QC program. NRG reviewed the QA/QC results for the groundwater samples set forth above. All of the QA/QC methods were within acceptable limits.

4.0 SIGNIFICANT NEW SITE INFORMATION OR DATA

Pursuant to 310 CMR 40.0425 (3)(b), significant new Site information is set forth in Section 3.0 and Section 6.0.

5.0 DETAILS OF/OR PLANS FOR THE MANAGEMENT OF REMEDIATION WASTE, REMEDIAL WASTEWATER AND/OR REMEDIAL ADDITIVES

Pursuant to 310 CMR 40.0425 (3)(c), details and/or plans for the management of remediation waste, remedial wastewater and/or remedial additives are set forth below.

5.1 Air Emissions/Vapor Phase Carbon

Prior to discharging SVE air emissions into the atmosphere, the air emissions are treated with two 1,000-pound vapor-phase carbon vessels connected in series. Pursuant to 310 CMR 40.0049 (5) and the DEP's *Off-Gas Treatment of Point Source Remedial Air Emissions (WSC-94-150)*, a minimum of 95% removal efficiency is required. Air emission monitoring details are set forth in Section 6.1.1.

NRG subcontracts Carbon Filtration Systems, Inc. (CFS) to remove the spent granular activated carbon (GAC) and to install virgin carbon in both of the vapor-phase carbon vessels. The carbon in the vessels was exchanged on May 9, 2002.

5.2 Purged Groundwater, Process Water and Product

Pursuant to 310 CMR 40.0045 (7), purged groundwater from monitoring well sampling is returned to the point of withdrawal at each well location. Process water from the SVE condensate and collected pure-phase product are drummed, pre-characterized, transported, and disposed at a Massachusetts licensed facility. No SVE condensate or pure-phase product has been collected, and/or disposed of since the last IRA Status Report.

5.3 Soil

Impacted soil has not been generated, stored on-Site, or transported off-Site since the last IRA Status Report.

6.0 MONITORING DATA RELATED TO THE OPERATION OF REMEDIAL SYSTEMS

Pursuant to 310 CMR 40.0425(3)(d), monitoring data related to the operation of remedial systems is set forth below.

6.1 Soil Vapor Extraction/Air Sparging Remedial System

During this reporting period, the SVE/AS remedial system experienced several short-duration shutdowns due to routine maintenance, temperature and/or moisture-related shutdowns, as detailed in Section 2.4.

6.1.1 Soil Vapor Extraction/Air Sparging Influent and Effluent Air Sampling

Pursuant to the DEP's Off-Gas Treatment of Point Source Remedial Air Emissions (WSC-94-150) dated May 25, 1994, the removal efficiency of the vapor treatment system must be greater than or equal to 95%, and must be monitored a minimum of once monthly. NRG collected samples of vapor off-gas emissions in tedlar bags on February 28, March 26, April 24, April 30, May 29, July 1, July 25 and August 27, 2002. Samples were collected from the influent and effluent sampling ports and screened for total organic vapors (TOV) concentrations utilizing a photo-ionization detector (PID). The results of the vapor sampling are summarized in Table 6-1, Appendix B. Based on the results of the vapor screening, the carbon in the treatment vessels was replaced on May 9, 2002.

6.2 Mass Removal

Vapor influent concentrations within the SVE/AS process stream have been measured to estimate the vapor-phase mass removal, as indicated in Table 6-1, Appendix B. Cumulative pounds of petroleum constituents removed versus time has been plotted in Figure 6-1, Appendix A. As of August 27, 2002, approximately 3,690 pounds of vapor-phase petroleum constituents have been treated through vapor-phase carbon adsorption or catalytic oxidation since the initiation of the SVE remedial system on September 15, 1997.

7.0 REMEDY OPERATION STATUS

Pursuant to 310 CMR 40.0893(1), Remedy Operation Status (ROS) applies to disposal sites where a remedial system, which relies upon Active Operation and Maintenance, is being operated for the purpose of achieving a Permanent Solution, pursuant to 310 CMR 40.0890.

7.1 Performance Standards For Remedy Operation Status

Pursuant to 310 CMR 40.0893(2), the Performance Standards for maintaining Remedy Operation Status ("ROS") at the disposal site are set forth below:

(a) The remedial system shall be adequately designed in accordance with 310 CMR 40.0870 to achieve a Permanent Solution.

NRG designed and installed the SVE/AS remedial system, as set forth in the IRA Plan submitted to the DEP on April 21, 1997, to achieve a permanent solution.

(b) The remedial system shall be operated and maintained in accordance with the requirements of 310 CMR 40.0890.

As set forth in this IRA Plan, on behalf of Carver Square, NRG is operating and maintaining the SVE/AS remedial system in accordance with 310 CMR 40.0890.

(c) Each source of [OHM] shall be eliminated or controlled in accordance with 310 CMR 40.1003(5).

As set forth in the *Phase II - Comprehensive Site Assessment Report* prepared by Green Mountain Environmental Services, Inc. and submitted to the DEP on November, 1990, the historic gasoline Underground Storage Tanks ("USTs") at the Site were removed in February of 1987.

(d) Any substantial hazard shall be eliminated.

The implementation of the SVE/AS remedial system at the disposal site has stabilized the impacts to the environment; therefore, a substantial hazard does not exist at the disposal site.

(e) At a minimum, information and data on operation and maintenance, and/or monitoring shall be gathered and submitted to the DEP every six months in a report as described in 310 CMR 40.0892.

On behalf of Carver Square, NRG will submit operation and maintenance, and/or monitoring reports every six months to the DEP, pursuant to 310 CMR 40.0983(2)(c).

7.2 Termination of Remedy Operation Status

Pursuant to 310 CMR 40.0893(5)(a) and (b), ROS shall terminate if the person providing the ROS opinion fails to meet the requirements of 310 CMR 40.0893(2), or the person providing the ROS opinion notifies the DEP in accordance with 310 CMR 40.0893(5)(c), that such person intends to discontinue the remedial system.

A Termination of ROS does not presently exist for the disposal site.

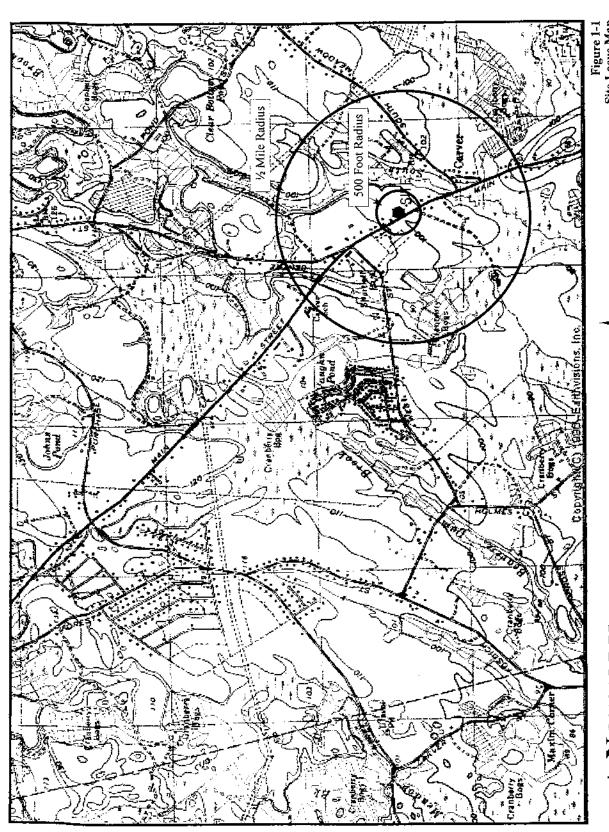


Figure 1-1
Site Locus Map
118 Main Street
Carver, Massachusetts
Source: U.S.G.S. Quadrangle Plympton MA
1: 26,000

Z

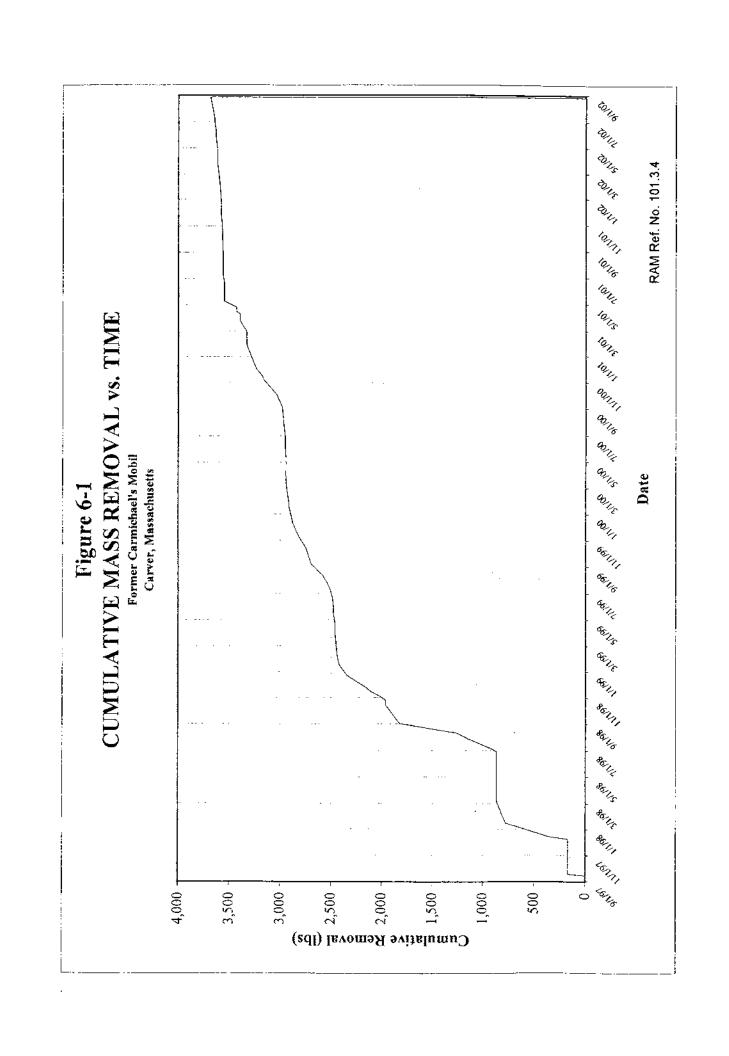


Table 6-1
Petroleum Mass Removal Rate and Cumulative Mass Removal vs. Time

Carmicheals - SVE/AS NRG project # 101.3.2

			Previous Time	Operational	Elapsed Tyme	Influent	Effluent	Total Air	Removal Rate	Removal	Cumulative	Remov
Current Date	Current Time	Previous Date	(mins)	Status	(days)	Conc.	Conc.	Flow (cfm)	(range)	period	Removal	Efficience
1		L _.	` ′	JULIE	(02/3)	(ppmv)	(рулау)	Flow (CILL)	(lbs/day)	(pounds)	(Total lbs.)	(%)
9/15/97	5:00 PM	9/15/97	5:00 PM	on	0	287	5	550	52.09	0.00	0.00	98.2
9/18/97	12:00 PM	9/15/97	5.00 PM	on	2.79	333	120	_ 550	60.44	168.73	168.73	63.9
12/8/97	12:00 PM	9/18/97	12:00 PM	off	81.00	0	0		0.00	0.00	168.73	0.0
12/11/97	3:00 PM	12/8/97	12:01 PM	on	3.12	313	0.6	240	24.79	77.45	246.18	99.8
12/13/97	4:00 PM	12/11/97	3.00 PM	on	2.04	265	3	260	22.74	46.42	292.60	98.8
12/15/97	2:00 PM	12/13/97	4:00 PM	on	1.92	288	6.8	348	33.07	63.39		97.6
1/15/98	3:15 PM	12/15/97	2:00 PM	OR.	31.05	116	0		13.40	416.04	772.03	100.0
2/9/98	3:45 PM	1/15/98	3:15 PM	OR	25.02	36	0:		1.89	47.26	819.29	100.0
2/10/98	12:00 PM	2/9/98	3:45 PM	on	0.84	38.4	0:		2.01	1.70	820.99	100.6
2/25/98	12:30 PM	2/10/98	I2:00 PM	OR	15.02	28.8			1.65	24,84	845.83	100 (
3/6/98	12:00 PM	2/25/98	12:31 PM	On	3.98	27,7	0		1.59	14.28	860.11	100.0
3/10/98	3:10 PM	3/6/98	12:00 PM	on	4.13	17	0;		0.98	4.03	864.14	100.0
3/25/98	1:50 PM	3/10/98	3:10 PM	on	14.94	Ö	0	174	0.00	0.00	864.14	0.0
3/31/98	1:06 PM	3/25/98	1:50 PM	0П	5.97	9.8	0	43.5	0.01	0.07	864.21	100.0
5/6/98	5:00 PM	3/31/98	1:06 PM	on	36.16	0.5	- 0	87.5	0.01	0.52	864,73	100.0
6/1/98	12:25 PM	5/6/98	5:00 PM	on	25.81	. 0.5	0		0.01	0.37	865.11	100.0
6/30/98	12:25 PM	6/1/98	5:00 PM	off	28.81	. 0	0		0.00	0.00	865.11	0.0
7/1/98	1:30 PM	6/30/98	12:25 PM	on	1.05	168	0	262.5	14.55	15.21	880 32	100.0
7/2/98	1:30 PM	7/1/98	12:25 PM	Oπ	1.05	87 2	. 0	262.5	7.55	7.89	888 21	100.0
7/10/98	10:00 AM	7/2/98	1:30 PM	Ort	7.85	87.2	0	262.5	7 55	59 33	947.54	100.0
7/28/98	11:15 AM	7/10/98	10:00 AM	on	18.05	132.5	0	239.25	10 46	188.85	1136.38	100.0
8/11/98	2:53 PM	7/28/98	11:15 AM	оп	14.15	192	0	130.5	8.27	117.01	1253.40	100.0
3/12/98	7:14 AM	8/11/98	2:53 PM	on	0.68	187	5.8	217.5	13.42	9.14	1262.54	96.9
9/3/98	4:20 PM	8/12/98	7:14 AM	on	22.38	219	0	348-	25.15	562.84	1825.37	100 (
9/4/98	4:40 PM	9/3/98	4:20 PM	ΦĦ	1.01	25.5	0.8	261	2.20	2.23	1827.50	963
9/9/98	451 PM	9/4/98	4:40 PM	on	5.01	38.9	O.	261	3.35	16.78	1844.38	100.0
10/7/98	2:45 PM	9/9/98	4:51 PM	on	27.91	22.4	0	435	3.22	89.75	1934.13	100.0
10/16/98	12:00 PM	10/7/98	2:45 PM	on	8.89	22.4	0	435	3.22	28.57	1962.70	100.0
10/27/98	12:00 PM	10/16/98	12:00 PM	ofT	11.00	0	0	0	0.00	0.00	1962.70	0.0
11/4/98	5:00 PM	10/27/98	12:00 PM	on	8.21	49	0	348	5.63	46.19	2008.89	100.0
11/10/98	9:20 AM	11/4/98	5.00 PM	on	5.68	79.4	0	339.3	8.89	50.50	2059.39	100.0
11/19/98	1:45 PM	11/10/98	9 20 AM	Off.	9.18	56.9	0	353.7	6.54	61.00	2120 39	100.0
11/25/98	2:20 PM	11/19/98	1:45 PM	on	6.02	43.6	0	387.1	5.57	33.55	2153.94	100.0
12/24/98	10:00 AM	11/25/98	2:20 PM	on.	28.82	51.5	0	382.8	6.51	187.49	2341.43	100.0
1/15/99	2:00 PM	12/24/98	10:00 AM	on	22.17	33.6	0	304.5	3.38	74.84	2416.27	100.0
1/26/99	12:10 PM	V15/99	2:00 PM	on	10 92	15.9	. 0	243.6	1.28	13.96	2430.24	100.0
2/12/99	2:15 PM	1/26/99	12:10 PM	٥n	17.09	7.7		274	0.70	11.90	2442.13	100.0
3/11/99	11:00 AM	2/12/99	2:45 PM	Oπ	26.84	5.5	0.	243.6	0.44	11.87	2454.00	100.0
3/31/99	1:30 PM	3/11/99	11:00 AM	on	20.10	5.5	0	243.6	0.44	8.89	2462.89	100.0
4/6/99	2:00 PM	3/31/99	1:30 PM	off	6.02	0	0;	0	0.00	0.00	2462.89	0.0
4/7/99	12:30 PM	4/6/99	2:00 PM	on	0.94	9	0	243.6	0.72	0.68	2463.57	100.
4/22/99	2:00 PM	4/7/99	12:30 PM	off	15.06	ő	0	0	0.00	0.00		0.9
4/27/99	1:30 PM	4/22/99	2:00 PM	on	4.98	5.2	0	261	0.45	2.23	2463.57	
5/5/99	11:15 AM	4/27/99	1:30 PM	on	7.91	6	0	243.6	0.48		2465.80	100
5/10/99	3:30 PM	5/5/99	11:15 AM	on	5.18	9.6	0	243.0		3 81	2469.61	100.
5/18/99	10:30 AM	5/10/99	3:30 PM	on	7.79	7.2			0.83	4.28	2473.89	100.
6/1/99	10:00 AM	5/18/99	10:30 AM	off	13.98	0.2	0	261	0.62	4.83	2478.72	100.
6/1/99	12:00 PM	6/1/99	10:00 AM				0	0	9.00	0.00	2478.72	0.0
6/17/99	12:30 PM	6/1/99	12:00 PM	OR ON	0.08	6.5	0	234.9	0.50	0.04	2478.77	100.
7/12/99	3:00 PM	6/17/99	12:30 PM	on.	16.02 25.10	13.8	0	234.9	0.33	5.22	2483.98	100.
8/2/99	1:00 PM	7/12/99	3:00 PM		20.92		0	243.6	1.11	27.85	2511.83	100.
8/11/99	3:15 PM	8/2/99	1:00 PM	OH		20	0	243.6	2.33	48.76	2560.59	100
9/8/99	2:00 PM	8/11/99	3:15 PM	on	9.09 27.95	45.8	- 0	295.8	2.15	19.53	2580.12	100.
10/14/99	9:00 AM	9/8/99	2:00 PM	on on		45.8	2.3	278.4	4.21	117.60	2697.72	94,
10/14/99	11:30 AM	10/14/99	9:00 AM	off	35.79		5	261	1.29	46.24	2743.96	66.
11/10/99	12:00 PM	10/14/99	11:30 AM	on	27.02	30	0	261	0.00	0.00	2743.96	0.
12/14/99	1:45 PM	11/10/99	12:00 PM	on	34.07	32	. 0	261	2.76	74.47	2818.44	100.
12/15/99	2:00 PM	12/14/99	1:45 PM	off		18	6	304.5	1.81	61.63	2880.06	66.
12/29/99	1:50 PM	12/15/99	2:00 PM		1.01	- 0	- 0	9	0.00	0.00	2880.06	0.
1/19/00	11:20 AM	12/29/99	1:50 PM	OR.	13.99	9	0.2	304.5	0.90	12.65	2892.72	97.
1/26/00	3:00 PM	1/19/00		on off	20.90	12	3.5	261	1.03	21.60	2914.32	70.
1/28/00			11:20 AM	off_	7.15	0	0	0	0.00	0.00	2914,32	0.
2/15/00	1:00 PM	1/26/00	3:00 PM	ОП	1.92	9.4	0	261	0.81	1.55	2915.87	100.
3/8/00	3:00 PM	1/28/00	1:00 PM	on	18.08	7.5	0.2	261	0.65	11.68	2927.55	97.
3/10/00	10:00 AM	2/15/00	3:00 PM	on	21.79	- 6	0.8	304.5	0.60	13.14	2940.69	86.
	10:00 AM	3/8/00	10:00 AM	off	2.00	- 6	0	- 0	0.00	0.00	2940.69	0.
3/10/00	2:00 PM	3/10/00	10:00 AM	on	0.17	7.5	0	304.5	0.75	0.13	2940.81	100.0
3/12/00	9:00 AM	3/10/00	2:00 PM	on	1.79	7.5	0	304.5	0.75	1.35	2942.16	100.0
3/20/00	10:00 AM	3/12/00	9:00 AM	off	8.04	0		0	0.00	0.00	2942.16	0.0
4/6/00	10:00 AM	3/20/00	10:00 AM	on.	17.00	5.9	0.2	130.5	0.25	4.32	2945.13	96.6
	2.20 AM	4/6/00	10:00 AM	on	18.68	5.9	0.2	130.5	0.25	4.75	2946.91	96.6

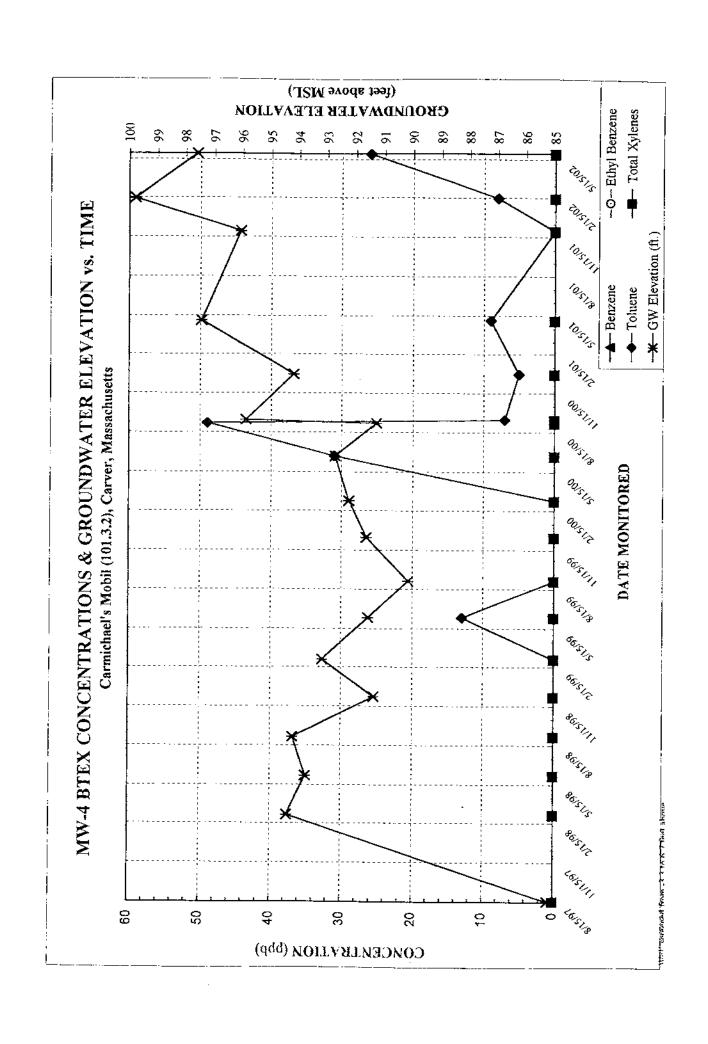
Table 6-1 Petroleum Mass Removal Rate and Cumulative Mass Removal vs. Time

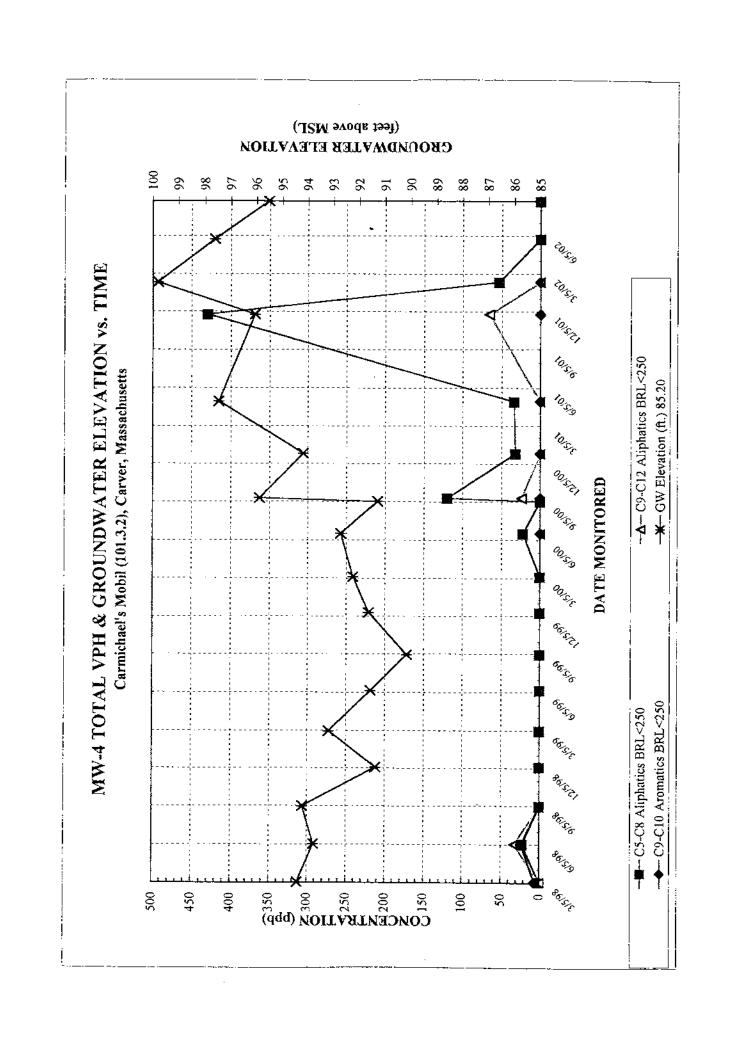
Carmicheals - SVE/AS NRG project # 101.3.2

_	_	:	Previous Time	Operational	Elapsed Time	Influent	Effluent	Total Air	Removal Rate	Removal	Cumulative	Remov
Cunnent Date	Current Time	Previous Date	(mins)	Status	(days)	Conc.	Conc.	Flow (cfin)	(range)	period	Removal	Efficien
			L. '			(ppmv)	(ppmv)		(ibs/day)	(pounds)	(Total lbs.)	(%)
5/11/00	12:40 PM	4/26/00	12:00 PM	on	15.03	6.1	0.3	87	0.18	2.63	2947.76	95
6/7/00	10:00 AM	5/11/00	12;40 PM	on	26.89	6	0.2	87	0.17	4.63	2952.40	96
6/9/00	4:00 AM	6/7/00	10:00 AM	οn	1.75	- 6	0.2	87	0.17	0.30	2952.70	96
6/19/00	9:00 AM	6/9/00	4:00 AM	off	10.21	0	0	0	0.00	0.00	2952.70	0
6/20/00	7:00 AM	6/19/00	9:00 AM	on	0.92	11.2	0	174	0.64	0.59	2953.29	100
6/29/00	9:00 AM	6/20/00	7:00 AM	off	9.08	. 0	.0	0	0.00	0.00	2953.29	- 0
7/12/00	3:20 PM	6/29/00	9:00 AM	on	13.26	9.3	0.3	174	0.53	7.08	2960.37	96
8/9/00	11:30 AM	7/12/00	3.20 PM	ОП	27.84	7.5	2.6	174	0.43	11.99	2972,36	65
8/11/00	10:00 AM	8/9/00	11:30 AM	off ·	1.94	O O	0	0	0.00	· 0.00	2972.36	O
8/11/00	11:00 AM	8/11/00	10:00 AM	on	0.04	3	0	261	0.26	0.01	2972.37	100
9/5/00	11:30 AM	8/11/00	11:00 AM	on	25.02	4.5	0	261	0.39	9.70	2982.07	100
10/3/00	10:30 AM	9/5/00	11:30 AM	on	27.96	16.3	0	348	1.87	52.33	3034.40	100
11/10/00	11:45 AM	10/3/00	10:30 AM	OR	38.05	32.3	3.3	348	3.71	141.35	3175,55	89
11/15/00	11:45 AM	11/10/00	11:45 AM	off	5.00	. 0	. 0	0	.0.00	0.00	3175.55	<u> ~∂%⊬0</u>
11/15/00	2:00 PM	11/15/00	11:45 AM	on	0.09	22.5	0	348	2.58	0.24	3175.79	100
12/4/00	11:20 AM	11/15/00	2:00 PM	OIL	18.89	30.2	9	348	3,47	65.51	3241.30	70
12/5/00	1:00 PM	12/4/00	11:20 AM	off	1.07	0	0	0	0.00	0.00	3241.30	- STO 0
12/5/00	3.00 PM	12/5/00	1:00 PM	on	0.08	29.1	0	348	3.34	0.28	3241.58	100
1/30/01	10:00 AM	12/5/00	3:00 PM	OH	55.79	14.4	3.4	348	1.65	92.26	3333 84	76
2/2/01	4:00 PM	1/30/01	10:00 AM	off	3.25	0	0	6	.0.00	0.00	3333.84	
3/1/01	12:00 AM	2/2/01	4:00 PM	οŧ	38.33	0	0	0	0.00	0.00	3333 84	0
3/26/01	11:00 AM	3/1/01	12:00 PM	on	24.96	26	. 0	304.5	2.61	65.21	3399.05	100
4/11/01	12:00 PM	3/26/01	11:00 AM	off	16.04	0	0	0	0.00	0.00	3399.05	0
4/17/01	2:30 PM	4/11/01	12:00 PM	on -	6,10	52	0	348	5.97	36.45	3435.50	100
4/26/01	12:00 PM	4/17/01	2:30 PM	off	8.90	0	0	0	0.00	0.00	3435.50	0
5/10/01	2:00 PM	4/26/01	12:00 PM	<u> </u>	14.08	72	Ö	348	8.27	116.45	3551.95	100
6/5/01	10:00 AM	5/10/01	2:00 PM	on	25.83	1.1	0	300	0.11	2.81	3554.76	100
6/18/01	9:30 AM	6/5/01	10:00 AM	off	12.98	0	- 0	Ó	0.00	0.00	3554.76	0
6/22/01	10:00 AM	6/18/01	9:30 AM	off	4.02	o	- 0	o[0.00	0.00	3554.76	0
6/22/01	1:00 PM	6/22/02	10:00 AM	ОЛ	0.08	0.3	O.	300	0.03	0.00	3554.77	100
7/10/0!	8:45 AM	6/22/01	1:00 PM	on	17.82	6.1	0	348	0,70	12.49	3567.25	100
8/7/01	830 AM	7/10/01	8:45 AM	OF	23.99	0.2		165	0.01	0.26	3567 51	100
8/17/01	11:00 AM	8/3/01	8.30 AM	off	14.10	0	0	0	0.00	0.00	3567.51	0
8/17/01	11:45 AM	8/17/01	11:00 AM	on	0.03	0.3	0	165	0.02	0.00	3567.51	100
8/27/01	4:15 PM	8/17/01	11:45 AM	off	10.19		O.	0	0.00	0.00	3567.51	0
8/27/01	5:00 PM	8/27/01	4:15 PM	on	0.03		Ö	0	0.00	0.00	3567.51	0
9/13/01	11:10 AM	8/27/01	5:00 PM	on	16.76	0.2	. 0	165	0.01	0.18	3567.70	100
11/G/01	3:15 PM	9/13/01	H:10 AM	σn	54,17	2.1	0	170	0.12	6.38	3574.08	100
11/28/01	9:00 AM	19601	3:15 PM	οπ	21.74	8.1	0	168	0.45	9.76	3583.84	100
12/29/01	12:00 AM	11/28/01	9:00 AM	off	31.63	0	0	0	0.00	0.00	3583.84	0
1/14/02	9:00 AM	12/29/01	12:00 AM	on	15.38	7.1	0	165	0.39	5.95	3589.79	100
1/31/02	11:00 AM	1/14/02	9:00 AM	on	17.08	5.3	0	170	0.30	5.08	3594.86	100
2/28/02	9:30 AM	1/31/02	11:00 AM	on	27.94	7.5	5.1	170	0.42	11.75	3606.62	32
3/06/02	2:40 PM	2/28/02	9:30 AM	ол	26.22	8.1	53	170	0.45	11.91	3618.53	34
4/11/02	10:00 AM	3/26/02	2:40 PM	off	15.81	0	0	0	0.00	0.00	3618.53	0
4/18/02	12:00 PM	4/11/02	10:00 AM	off	7.08	0	Ö	0	0.00	0.00	3618.53	0
4/24/02	10:15 AM	4/18/02	12:00 PM	off	5.93	0	. 0	0	0.00	0.00	3618.53	Ó
4/30/02	9:30 AM	4/24/02	10:15 AM	οπ	5.97	9.5	3,7	165	0.52	3 09	3621.62	61
5/9/02	11:30 AM	4/30/02	9:30 AM	off	9.08	0	0	. 0	0.00	0.00	3621.62	*** 2.0
5/29/02	11:20 AM	4/30/02	9:30 AM	0R	29.08	9.3	0	165	0.51	14.72	3636.34	100
6/11/02	10:15 AM	5/29/02	11:20 AM	off	12.95	0	. 0	0	0.00	0.00	3636.34	0
7/1/02	8:30 AM	6/11/02	10.15 AM	.on	19.93	11.1	0.1	166	0.61	12.12	3648.46	- 99
7/3/02	3:35 PM	7/1/02	8:30 AM	off	2.30	0	0	0	0.00	0.00	3648.46	0
7/9/02	2:30 PM	7/3/02	3:35 PM	ofi	5.95	0	0	0	0.00	0.00	3648.46	0
7/25/02	11:00 AM	7/9/02	2:30 PM	oπ	15 85	13.2	0.3	164	0.71	11.33	3659.79	97
8/27/02	2:35 PM	7/25/02	11:00 AM	on .	33.15	16.3	- 31	170	0.91	30.31	3690.101	100.

Sytem Shutdown (Alerra Condition)
Carbon Changeout

MW-4 GROUNDWATER CONCENTRATIONS


						County	deal tone (purh						
7-MJ/-						CONCE	Content atmand					<u>.</u> ن	_ ان ن
	Top of Depth to	to Depth to	G.W.	Вепгепе	Ethyl Benzene	Toluene	Total Xylenes	MTRE	Naphthalene	Lead	Aliphatics	Aliphatics	Aromatics
	VC Water (ft.)							1000	0505 146	BRI <3	BRL<250	BRL<250	BRL<250
6015107	07.10 0.20	9 18	85.20	BR1.< 250	BRL- 250	BRL< 250	18RL< 250	1 007 1 NOS	BRI < 5	ΨZ	BRL<5	BR1.< 5	9
<u> </u>	-	6.02	94.39	BRE<	BR1.< 1	HIKLY.	131KL / Z	=	RR1 < 5	ž	22	32	
	-	6.67	93.74	BRL<1	BRL< 5	BRUKS	15KU / 10	260	BKI < 5	ĮŽ.	BRJ.< 20	BRJ.< 20	BRL< 20
01 86/P/h	100 41 6 22	6.22	94.19	BRL:< 1	JRE CO	MKLA 3	01 / 100	- RR(5 5 1	BRLS	ΑΝ	BRL< 20	BRL< 20	BRL X
-	100 41 9 06	_	91.35	BRJ.<		S S S S S S S S S S S S S S S S S S S		 	1.5×188	NA	BR1.< 20	BRL< 20	BIRL< 20
-	-	7.25	93 16	ISRT<	Takiro	18KL/5.	Total State	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	BRL<5	٧Z	BRL< 20	BRU.< 20	3K1.< 20
+	100.41 8 85	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91.56	BR3,< 1	BRIAS		19		BRL< 5	₹ Z.	BRI.< 20	BRL< 20	BRI × 20
 -	<u> </u>	10.25	91 06	BRT<1	BRL<5 	BKL 5	907 710	2 2 2 2	IN SECTION	Ž	BRL < 20	BR1,< 20	BRL× 20
+	+		43 63	BRL< i	13KL 5	BRLS	91 (1)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1301 < 5	Z.	BRL< 20	BRJ.> 20	BR1.< 20
╀	 	<u> </u> 	92.23	BRJ.< 1	BRLS	BRISS	BKL O	314155	SHE S	ź	22	13R1.< 20	BRL < 20
00,000	 - 	6972	92.72	BR1.<1	BRI S			2 100	 	 × 	BR1.< 20	BRE< 20	BRL < 20
+	<u> </u>	9.12	91.39	BRJ.<1	BRI > S	\$ - -	BKUA 10	14/1/201	BRISS	ž	32	BRL< 20	BRL< 20
†	 -	<u> </u>	94.19	BRI	ISRI < 5	2		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Ş	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	BRL > 20	BKL < 20
+	 - -		97.46	B)X[,< !	BRL 5	6	13K1.v		Series	ź	120	24	BR1.<20
07.3700	<u> </u> -	-	98 %	BRLS	URL <5	 - - 	187617 U	21,2	 	₹	430	66	BR1.<20
<u> </u>	+	4.34	50.07	13RLC.	SR5-5	() () () () () () () () () () () () () (RRISS	¥Z.	65	13RL< 20	BRL< 20
002.04		0.62	99.79	RE A	BRL<5	×	5 C 10		13R1.<.5	¥Z.	BRL< 20	BRL< 20	BRL < 20
7	<u> </u> _	<u> </u> _	97.6	BR1,<1	BR!.< 5	e l	2 / TXS	- Nice	1381.< 5	ž	J3RL< 20	BR1.< 20	BR5.< 20
+	 -	4 87	95.54	BRL<1	13KL<5	14KI/> 0	or chief	A CONTACTOR					
201750				Method 1	1 Groundwater Cleanup Standards (310 CMR 40 0974(2)), 1022772	anup Standard	s (310 CMK 4	0.0974(2)), 100	1	· ·	1 400	4,000	200
				2	700	1,000	10,000	02	- 1		000	000	4,000
Niethod LCW-L	 		<u> </u>	2 000	000 +	000'9	6,000	50,000	6,000	22.	200.1		
Method 1 GW-2/3													


All data prior to 6/28/96 taken from LCR Inc., report dated 12/4/89

No depth to groundwater was reported in the LCR Report for 10/04/89, just a groundwater elevation is reported. It is not known whether this measurement was corrected for NAPL depression. According to the LRC Report, MW-1 had 2" of NAPL at the time of sampling.

Formula used to correct groundwater elevation for depression by NAPL. Cravity of NAPL.) Corrected Elevation – Oh/Water elevation – (NAPL. Thickness * Specific Cravity of NAPL.) Specific Cravity for gasoline used – 0.74 (Taken from Merck Index Eleventh Edition, 1989).

18R1. < 10 Indicates concentration, if any, is below reporting Insit for analyte. NA - sample not analyzed for this analyte. NS - no standard available for analyte.

MW-8 GROUNDWATER CONCENTRATIONS

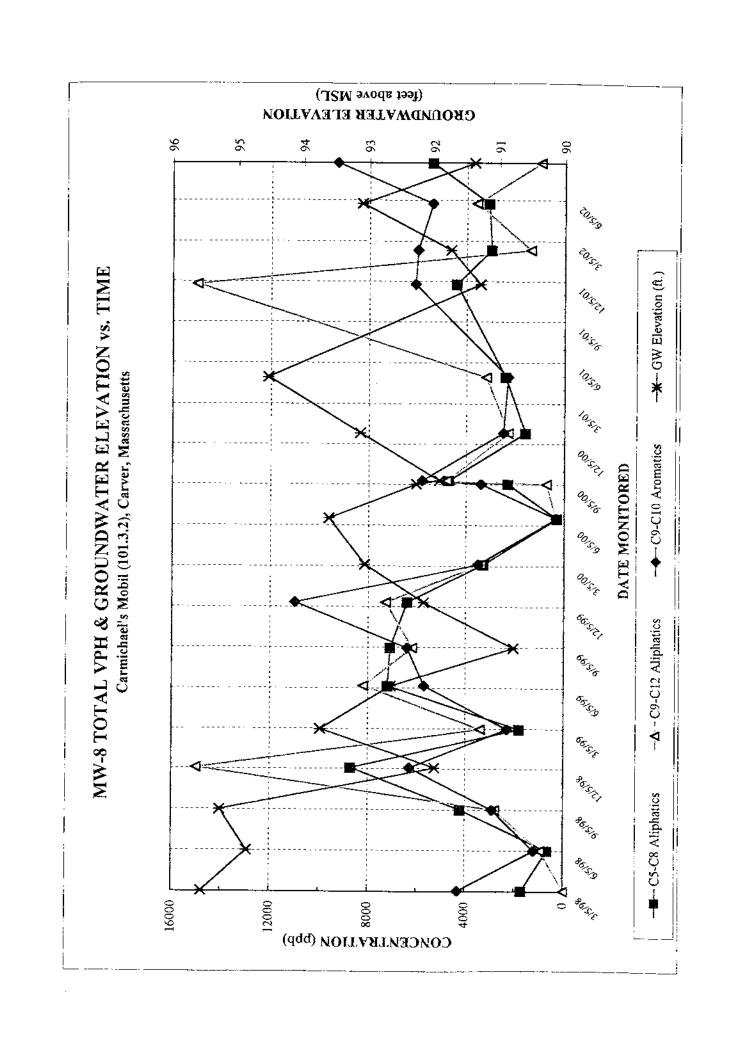
Dyte Top of PVC Depth to PvC Depth to PvC (f, f) Rick and PvC Total MTBE Total Alphatics	NW-8							Солсен	Concentrations (ppb)	b)					
102 05 6 51 95.54 RRL<5	Date	Top of PVC	Depth to Water (ft.)	Depth to NAPL (ft.)	GW Elevation (ft.)	Вепжепе	Ethyl Benzene	Toluene	Total Xylenes	1	Naphthalene	Lead	C _e -C _s	C ₉ -C ₁₂ Aliphatics	C ₉ -C ₁₀
(102.05 7.20 94.85 RRL<2 190 BRL<10 710 BRL<10 48 NA 660 940 102.05 6.79 95.26 2.7 1860 BRL<25	3/5/98	102.05	6.51	6.51	95.54	BRL<5	500	9	2,020	BRL< 25	130	۸X	1,700	BRL<25	4,300
102.05 679 679 95.26 27 860 BRL-25 3,100 BRL-55 550 BRL-55 550 BRL-55 550 BRL-50 570 B	6/5/98	102.05	7.20	7.20	94.85	BRL<2	061	BRL< 10	710	BRL< 10	87	NA	099	940	1,200
102.05 10.08 10.08 10.08 10.08 10.08 10.08 10.08 10.08 10.08 15.90 <t< td=""><td>86/4/6</td><td>102.05</td><td>6.79</td><td>6.79</td><td>95.26</td><td>2.7</td><td>098</td><td>BRL < 25</td><td>3,100</td><td>BRL<25</td><td>250</td><td>ΝΑ</td><td>4,200</td><td>2,800</td><td>2,900</td></t<>	86/4/6	102.05	6.79	6.79	95.26	2.7	098	BRL < 25	3,100	BRL<25	250	ΝΑ	4,200	2,800	2,900
102.05 8.32 8.32 93.73 10 380 BRL<10 1,450 BRL<10 10 NA 7,800 3,400 3,400 102.05 1,128 9.40 92.65 3.9 1,000 BRL<25	12/7/98	102.05	10.08	10.08	91.97	21	2,000	BRL < 50	5,500	BRI,< 50	510	AN	8,700	15,000	6,300
102.05 9.40 9.40 9.26 3.9 1,000 BRL<25 3,950 iRL<25 3.80 NA 7,100 8,200 102.05 11.28 11.28 90.77 BRL<5	3/4/99	102.05	8.32	8.32	93.73	10	380	BRL< 10	1,450	BRL< 10	110	ΨN	1,800	3,400	2,300
102.05 11.28 11.28 90.77 BRL<5 770 BRL<25 3,180 BRL<25 330 NA 7,180 6,200 102.05 9.90 9.90 92.15 BRL<10	66/6/9	102.05	9.40	9.40	92.65	39	1,000	BRL < 25	3,950	BRL< 25	280	ΝΑ	7,200	8,200	5,700
102 05 8.90 8.90 92.15 BRL<10 1,700 BRL<50 6,600 BRL<50 35 440 NA 6,400 7,300 7,300 102.05 8.99 8.99 93.06 BRL<5 540 BRL<25 2,230 35 11 NA 3,300 3,400 3,400 102.05 8.44 8.44 93.61 BRL<1 44 BRL<5 2,230 BRL<25 180 NA 2,300 340 340 102.05 102.05 8.92 8.92 93.13 BRL<5 1,850 BRL<25 1,850 BRL<25 1,800 NA 2,300 2,300 3,200 102.05 10.14 10.14 91.51 BRL<5 1,800 BRL<50 BRL<50 300 NA 4,700 4,800 1,400 102.05 10.20 10.	66/2/6	102.05	11.28	11.28	20.77	BRL<5	170	BRI.< 25	3,180	BRI.< 25	330	¥Z	7,100	6,200	0,400
102.05 8.99 8.99 93.06 BRL<5 540 35 160 NA 3,300 3,400 7 102.05 8.44 8.44 93.61 BRL<1	12/14/99	102.05	06.6	9.90	92.15	BRL< 10	1,700	BRL< 50	6,600	BRL< 50	944	ΝA	6,408	7,300	11,000
102.05 8.44 8.44 93.61 BRL<1 44 BRL<5 2120 BRL<25 180 NA 2,300 730 7	3/8/00	102.05	8.99	8.99	93.06	BRL<5	540	BRL< 25	2,230	35	160	NA	3,300	3,400	3,500
102.05 9.78 9.78 92.27 15 570 BRL<25 2,220 BRL<25 180 NA 2,300 730 7	6/20/00	102.05	8.44	8.44	19:66	BRL< I	44	BRL<5	212	BRI.< 5	=	Ϋ́Ν	300	340	320
102.05 8.92 8.92 93.13 BRL-5 430 BRL-25 1,850 BRL-55 180 NA 1,600 2,300 2,300 102.05 7.51 7.51 94.54 BRL-5 360 BRL-25 1,520 BRL-55 90 NA 4,700 4,800 3,000 1,600	00/5/6	102.05	9.78	87.6	92.27	15	570	BRL < 25	2,220	BRL<25	180	NA	2,300	730	3,400
102.05 7.51 7.51 94.54 BRL<5 360 BRL<25 1,520 BRL<25 90 NA 2,480 3,200 4,700 4,700 4,700 4,700 4,700 4,700 4,700 4,700 4,700 4,700 4,700 4,700 4,700 4,700 4,700 4,700 4,700 4,700 4,700 1,600<	12/29/00	102.05	8.92	8.92	93.13	BRL< 5	430	BR1,< 25	1,850	BRL< 25	180	NA	1,600	2,300	2,500
102.05 10.14 10.14 91.91 BRL-st0 1,300 BRL-s50 5,200 BRL-s50 300 NA 4,700 4,890 1,600 102.05 10.75 10.75 91.29 10 1,100 BRL-s50 4,700 BRL-s50 330 NA 4,409 15,806 1,400 10.205 10.31 91.74 23 800 BRL-s25 3,900 BRL-s25 2,300 NA 3,100 1,400 1,400 1,600 1,400	5/3/01	102.05	7.51	7.51	94.54	BRL<5	360	BRL<25	1,520	BRL<25	96	۲Z	2,400	3,200	2,300
102.05 10.76 10.76 91.29 10 1,100 BRi.550 4,700 BRL.55 330 NA 4,409 15,806 6 102.05 10,31 10,31 91.74 23 800 BRI.<25	6/13/00	102.05	10.14	10.14	16.16	BRL<10	1,300	BRL<50	5,200	BRL<50	300	NA	4,700	4,800	5,800
102.05 10.31 10.31 91.74 23 800 BRL<25 3,990 BRL<25 3,990 BRL<25 2,770 BRL<25 210 NA 3,100 3,600 7 102.05 10.67 10.67 91.38 42 1,500 BRL<50	11/28/01	102.05	10.76	10.76	67.16	10	1,100	BRL<50	4,700	BRL<50	330	ΨX	4,400	15,000	6,100
102.05 8.94 8.94 93.11 BRL<5 760 BRL<25 2,770 BRL<25 2,770 BRL<25 390 NA 3,180 3,600 1,000 1	2713/02	102.05	10,31	10.31	91.74	23	800	BRL<25	3,090	BRL<25	230	Ϋ́	3,000	1,400	6,000
102.05 10.67 10.67 91.38 42 1,500 BRL < 50 1,000 10,000 70 15 10,000 10,000 10,000 10,000 10,000 1,000	5/28/02	102.05	8.94	8.94	93.11	BRI.< 5	760	BRL < 25	2,770	BRL<25	210	NA	3,100	3,600	5,400
Method 1 Groundwater Cleanup Standards (310 CMR 40.0974(2)); 10/29/99 20 1,000 10,000 70 20 1,000 1,000 70 20 1,000	8/27/02	102.05	10.67	10.67	_		1,500	BRL<50	5,500	BRL<50	390	NA	5,400	000`1	9,300
5 700 1,000 70 20 15 4,000 2,000 4,000 6,000 50,000 6,000 1,000 1,000						Method 1 Gr	oundwater Clean	up Standards	(310 CMR 40	0.0974(2)); 10/	29/99				
2,000 4,000 6,000 6,000 6,000 6,000 NS 1,000 1,000	Method 1 GW-1					5	700	1,000	10,000	70	20	15	400	4,000	200
	Method 1 GW-2/3					2,000	4,000	6,000	000'9	50,000	000'9	SN	000'1	000'1	4,000

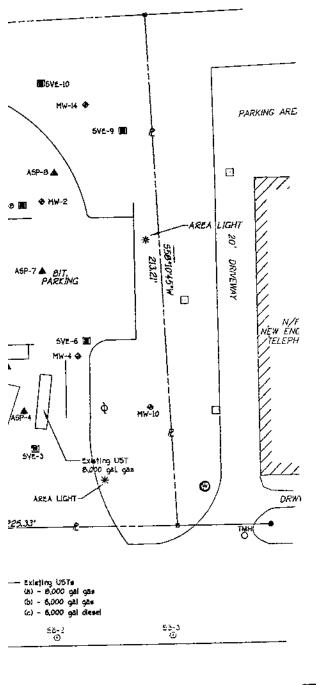
Formula used to correct groundwater elevation for depression by NAPL.

Corrected Elevation = Oil/Water elevation - (NAPL Thickness * Specific Gravity of NAPL).

Specific Gravity for gasoline used = 0.74 (Taken from Merck Index Eleventh Edition, 1989).

BRL < 10 Indicates concentration, if any, is below reporting limit for analyte.


NA - sample not analyzed for this analyte.


NS - ro standard available for analyte.

Rald indicates concentration exceeds Method 1 GW-1 Groundwater Cleanup Standard.

Inglic indicates concentration exceeds Method 1 GW-2/3 Groundwater Cleanup Standard.

ISIONS

DESCRIPTION

Legend

- STORM DRAIN

- SURFACE WATER RUNOFF

MONETORING WELL LOCATION

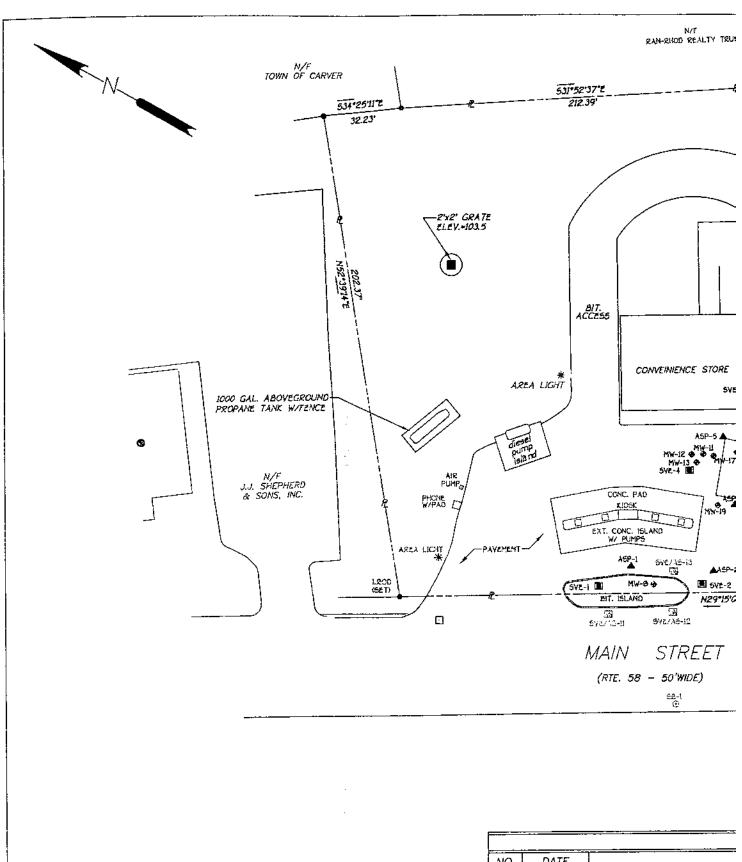
ORINKING WATER SUPPLY WELL

■ -SOIL VAPOR EXTRACTION WELLS

A -AIR SPARGING WELLS


-PROPERTY LINE

⊕ -501L BORING LOCATION (11/18/99)


SOIL VAPOR EXTRACTION/AIR SPARGING WELLS

& -UTILITY POLE

Med of Bother Pro

FILE: N:\CAD\ACTIVE\PROJECTS BY N	
NORFOLK CNE ROBERTS ROAD PLYMOUTH MA. 02360 RAM GROUP ENGINEERING: ENVIRONMENT	
FIGURE 2-1 SITE MAP	CHECKED BY: J.P.S.
PREPARED FOR: FORMER CARMICHAEL'S MOBIL 118 MAIN STREET CARVER, MASSACHUSETTS	EDITED BY: L.K.H. DATE: 02/19/02 DWG SCALE: 1* ~ 40' RAM REF NUMBER: 101.3.2 SHEET NO: 1 OF 1

NO.	DATE	 •	

Jablonski, Mark (DEP)

From:

Jablonski, Mark (DEP)

Sent:

Wednesday, October 09, 2002 2:37 PM

To:

Martin, Gerard (DEP)

Cc: Subject: Packard, Richard (DEP); Ferreira, Lori (DEP); Hill, Beverly (DEP); Kenny, James (DEP)

Carmichael's Mobil- Carver (4-11188 & 4-612)

GM-I called Joe Salvetti because he submitted an IRA Status/Phase V O&M Report without any MCP phased reports (specifically II, III, & IV) credited to these RTNs. I checked EPICs & the file room & didn't find anything. I also told Joe that he should close RTN 4-11188 because NAPL hasn't been observed on-site since 1998. Joe thought an IRA should stay open while an active treatment system is operating that is located within 500' of a private drinking water well? Joe stated that the IRA condition would reoccur if the treatment system were to shutdown. I told him that he should conduct these response actions as a comprehensive action or remedy operation status if indeed all the phases are complete. Jim issued a Tier IB permit in 1999 which required a Phase II SOW. A letter in the report was issued to Mark Wood. Any thoughts or recall by anybody out there in email land on these RTN's would be helpful. Joe is going to research & get back to me.

IMMEDIATE RESPONSE ACTION COMPLETION REPORT AND IMMINENT HAZARD EVALUATION

Former Carmichael's Mobil 118 Main Street Carver, Massachusetts

RTN 4-0612 (Norfolk Ref. No. 101.3)

April 9, 2004

Prepared for:

Carver Square Auto Services, Inc. One Roberts Road Plymouth, Massachusetts 02360 Prepared by:

Norfolk Ram Group, LLC One Roberts Road Plymouth, Massachusetts 02360

TABLE OF CONTENTS

1.0	INTRODUCTION	1-1
2.0	POTENTIALLY RESPONSIBLE PARTY INFORMATION	2-1
3.0	DESCRIPTION OF RELEASE(S), SITE CONDITIONS AND SURROUNDI RECEPTORS	3-1 3-3 3-3 3-3 3-3 3-3
4.0	DESCRIPTION OF IRA ACTIVITIES CONDUCTED AT THE SITE	/AS 4-1 4-1 4-2 4-3 4-3 4-4 4-5 4-6 4-6
5.0	MANAGEMENT OF REMEDIAL WASTE 5.1 AIR EMISSIONS/SPENT CARBON 5.2 SOIL 5.3 WATER AND NON AQUEOUS PHASE LIQUID	5-1 5-1
6.0	SEAL AND SIGNATURE OF THE LICENSED SITE PROFESSIONAL	6-1
7.0	FINDINGS AND CONCLUSIONS	7-1
8.0	LIMITATIONS	8-1

APPENDICES

APPENDIX A FIGURES

Figure 1-1 Site Locus Map

Figure 2-1 Site Map

Figure 3-1 MassGIS Natural Resources Map

APPENDIX B TABLES

Table 4-1 Volatile Petroleum Hydrocarbons and Volatile Organic Compounds Detected in Groundwater

APPENDIX C LABORATORY ANALYTICAL DATA PACKAGES

APPENDIX D BWSC TRANSMITTAL FORMS & PUBLIC NOTIFICATION

LETTERS

Immediate Response Action (IRA) Transmittal Form (BWSC-105)

Letters to Chief Municipal Officer/Board of Health

1.0 INTRODUCTION

Pursuant to 310 CMR 40.0427, on behalf of Carver Square Auto Services, Inc., Norfolk Ram Group, LLC (Norfolk) has prepared this *Immediate Response Action (IRA) Completion AND Imminent Hazard Evaluation Report*, in connection with a release of oil and/or hazardous materials (OHM) at the Former Carmichael's Mobil located at 118 Main Street in Carver, Massachusetts (the Site). The Massachusetts Department of Environmental Protection (DEP) has assigned Release Tracking Number (RTN) 4-0612 to the release. This RTN was issued as a result of the presence of elevated concentrations of gasoline-related volatile organic compounds (VOCs) in soil and groundwater at the Site. The presence of VOCs was attributed to historical release(s) of gasoline associated with the use of the Site as a filling station since approximately 1929. A second RTN (4-11188) was issued to the Site in March 1995, when a release of gasoline to soil was reported as a result of a leaking pump gasket. RTN 4-11188 was subsequently linked to 4-0612 in 1997, which is still open at the Site. A Site Locus Map and a Site Map are included as Figures 1-1 and 1-2, respectively, Appendix A.

Pursuant to 310 40.0412(2), an IRA is required as a result of the existence of a 72-hour release notification condition. Specifically, the IRA was triggered by the presence of gasoline-related VOCs in excess of Category RCGW-1 Reportable Concentrations within 500 feet of a private water supply well. An *Immediate Response Action Plan* was submitted to the DEP on April 21, 1997, proposing the installation and operation of a soil vapor extraction/air sparge (SVE/AS) system to remediate soil and groundwater impacted by the release. The system was started on September 15, 1997.

2.0 POTENTIALLY RESPONSIBLE PARTY INFORMATION

Pursuant to 310 CMR 40.0424(1)(a), the entity assuming responsibility for conducting the IRA and the Licensed Site Professional (LSP) of record, are listed below.

POTENTIALLY RESPONSIBLE PARTY

Carver Square Auto Services, Inc.
One Roberts Road
Plymouth, Massachusetts 02360
Contact person: Bruce Garrett
Telephone: (508) 747-3778, extension 124

LSP OF RECORD

Joseph P. Salvetti, LSP License No. 9546 Norfolk Ram Group, LLC One Roberts Road Plymouth, Massachusetts 02360 Telephone:(508) 747-7900, extension 127

3.0 DESCRIPTION OF RELEASE(S), SITE CONDITIONS AND SURROUNDING RECEPTORS

Pursuant to 310 CMR 40.0426(4)(a), a description of the release, Site conditions and surrounding receptors are provided below.

The disposal site is located on the east side of Main Street in Carver, Massachusetts. A Site Locus Map and Disposal Site Map are attached as Figures 1-1 and 1-2, respectively, Appendix A.

3.1 DESCRIPTION OF RELEASE(S)

Pursuant to 310 CMR 40.0424(1)(b), a description of the release, site conditions and surrounding receptors is provided below.

According to a review of pertinent local records, the sale of gasoline at the Site has been licensed since 1929. Continuous flammables storage permits for the Site were on file locally from 1957 to 1996. In 1982, three existing USTs were internally lined with fiberglass. According to the Carver Fire Chief, the USTs were relined due to the discovery of water in one of the tanks.

New USTs were installed in January 1987. During the installation, two releases were documented: 1) an overfill of one new UST occurred when the tank was being prepared for tightness testing, and, 2) a leak from a suction line. Both leaks were reportedly cleaned up immediately. USTs were removed from the Site in February 1987. Although no release was documented, the tank removal contractor later reported to the DEP that the tank graves were "not perfectly clean". Test pits performed by the tank removal contractor (Zecco, Inc.) were documented in a 1989 Subsurface Evaluation report. The report indicated that gasoline impacted soil was evident in the tank grave area.

In June 1988, an improperly sealed overfill containment box was identified and repaired. Short term groundwater extraction and treatment was implemented to reduce benzene, toluene, ethylbenzene and xylene (BTEX) concentrations in groundwater, but was determined to be generally ineffective.

Soil and groundwater sampling performed approximately one year after the USTs were installed indicated the presence of gasoline constituents in soil, and elevated concentrations of gasoline constituents were detected in groundwater sampled from monitoring wells adjacent to the newly installed USTs.

A soil vapor survey was conducted and additional monitoring wells were installed by Green Mountain Environmental Services, Inc. (GMES) during 1989-1990. Based upon these investigative activities, GMES delineated dissolved-phase gasoline in groundwater in the general vicinity of the USTs installed in 1987, and identified gasoline impacts to the vadose zone in the areas of the former (pre-1987) USTs to the north of the 1987-installed USTs.

in January of 1992, a petroleum sheen and beads of what appeared to be motor oil were observed on groundwater in MW-6. The presence of oil in this well was attributed to vandalism of the well, and was not observed in other wells in the immediate vicinity.

Periodic groundwater monitoring from 1991 through 1994 indicated increasing concentrations of BTEX and MTBE in groundwater, most notably in MW-6. UST lines tested tight in 1992, and inventory records showed continued compliance with state and federal UST requirements. In March 1995, a leaky gasket on the submersible system pump was identified and repaired. An Immediate Response Action (RTN 4-11188) was undertaken to remove impacted soil (approximately 2 cubic yards) from around the leaky pump. Post-excavation soil samples were below Method 1 S-1 soil standards.

As a part of Site reconnaissance activities performed in 1997, ten (10) existing monitoring wells were located and evaluated. An elevation survey of each wellhead was performed, and depth to groundwater measurements were collected to update existing groundwater contour data. Groundwater elevations were gauged in each well, and each well was inspected for the presence of petroleum odors, and separate phase product. No separate phase product was observed, but petroleum odors were noted in several monitoring wells in the vicinity of the former UST grave.

Based upon the foregoing, gasoline constituents have persisted in groundwater since the initial groundwater sampling event was performed in 1988. As of the most recent sampling event (February 24, 2004), concentrations of benzene, toluene, naphthalene, and two of the three Volatile Petroleum Hydrocarbons (VPH) hydrocarbon fractions exceeded the Method 1 GW-1 standards for groundwater collected from monitoring wells MW-8.

A description of the response actions associated with RTN 3-0612, which is the subject of this IRA Completion Report, is presented in Section 4.0.

3.2 DESCRIPTION OF SITE CONDITIONS

The Site is an active gasoline station/convenience store located on the east side of Main Street (Route 58). It is situated in an area primarily composed of commercial and municipal properties. Property uses abutting the Site include a Verizon switching station office to the south; the Carver Square shopping center development (business offices, restaurants and retail shops) to the east and southeast; and a funeral home to the north. A meeting hall, a church, and a cemetery are located across Main Street from the Site. The topography of the Site and vicinity is generally flat, as indicated on Figure 1-1, Appendix A.

3.3 DESCRIPTION OF SURROUNDING RECEPTORS

3.3.1 Institutions

There are no publicly or privately owned hospitals, health care facilities, orphanages, or educational facilities which provide overnight housing within 500 feet of the Site. The Meadowbrook residential development is located approximately 500 feet northeast of the Site. Meadowbrook is a residential community for the physically and mentally disabled, and the elderly. According to the Carver Board of Health Agent, this development does not meet the common definition of a nursing home or convalescent home, because in-house medical care is not provided. Approximately 200 residents live in the Meadowbrook complex.

3.3.2 Surface Waters and Wetlands

According to the Massachusetts Geographic Information Systems (MassGIS) Natural Resources Map, attached as Figure 3-1, Appendix A, there are no vernal pools, wetlands, lakes, streams, rivers or reservoirs located within 500 feet of the disposal site. The nearest surface water body is South Meadow River, located approximately 1,000 feet east of the Site.

3.3.3 Drinking Water Supplies

There are no drinking water supplies consisting of Zone II Areas or Zone A Surface Water Bodies within 500 feet of the Site, as indicated on the MassGIS Map. The Site is located within a designated sole source aquifer as defined by 310 CMR 40.0006.

The Site building and properties within a 500-foot radius of the Site are served by drinking water wells. Many of these wells are located in businesses, restaurants and public buildings. Therefore, these wells are considered public non-community supply wells. The Site is located within the Interim Wellhead Protection Area of several public, non-community supply wells. No well construction records were available. However, according to the Carver Board of Health Agent, the potable water supply wells in the vicinity of the Site are assumed to be shallow. The nearest downgradient water supply well is located on the Verizon property, which abuts the site to the east. The wellhead is located approximately 20 feet east of the southern site boundary and approximately 80 feet south of MW-4, the closest impacted monitoring well.

A non-transient, non-community public water supply well is located approximately 750 feet east of the Site at the Carver Square Shopping Center. This well is reported to be a six-inch diameter bedrock well with an approximate depth of 83 feet. According to the records on file at the Carver Board of Health, the well is solidly cased through the unconsolidated aquifer. The casing extends 11 feet into bedrock (42 to 53 feet below grade). Records on file with the DEP indicated that water quality testing has been performed since 1995, when the Carver Square well was initially registered as a non-transient, non-community supply well. Based upon a review of analytical reports of sampling events, VOCs have not been detected in samples from the Carver Square well. The Site is supplied water from the Carver Square well.

3.3.4 Environmental Resource Areas

Based upon the MassGIS Map, there are no areas of critical environmental concern (ACEC), Natural Heritage and Endangered Species Program (NHESP) Rare Species Habitats, NHESP Estimated Habitats of Rare Wildlife, or NHESP Certified Vernal Pools located within 500 feet of the Site. An open space area is located immediately north of the Site.

4.0 DESCRIPTION OF IRA ACTIVITIES CONDUCTED AT THE SITE

Pursuant to 310 CMR 40.0424(1)(b) and (c) a description of the IRA activities conducted at the Site is presented below.

4.1 INSTALLATION, MAINTENANCE, AND OPERATION OF THE SVE/AS SYSTEM

In accordance with the IRA Plan dated April 21, 1997, an SVE/AS system was installed at the Site. The system was started on September 15, 1997, and has been in operation continuously since that time except for short-term shutdowns due to maintenance or alarm conditions. As currently configured, the system consists of thirteen (13) SVE points and twelve (12) AS points. Extracted vapors are passed through two activated carbon vessels prior to discharge to the atmosphere. To date, approximately 4,200 lbs. of hydrocarbons have been removed from the subsurface in the vapor phase. Detailed information regarding the operation and maintenance of the SVE/AS system has been provided in IRA Status Reports and Phase V Reports submitted between February 1998 and November 2003. Operation of the SVE/AS system will continue as a Comprehensive Response Action.

4.2 NON-AQUEOUS PHASE LIQUID GAUGING

NAPL was detected in monitoring well MW-17 on September 4, 1998 at a thickness of approximately 0.57 inches. NAPL has not been detected in monitoring well MW-17 before or since September 4, 1998. NAPL has not been observed by Norfolk in monitoring wells MW-4, MW-8, MW-10, MW-14, or MW-19.

4.3 GROUNDWATER SAMPLING

Since March 1998, Norfolk has collected groundwater samples on a quarterly basis from monitoring wells MW-4, MW-8, MW-10, MW-14, MW-17, and MW-19. Groundwater samples are collected with dedicated disposable bailers, and submitted to a laboratory for VPH with target VOCs analyses. In order to assess potential impacts to the drinking water supply well located at the downgradient Verizon property, a drinking water sample were collected from within the building on June 19, 2003 and analyzed for VPH with target VOCs. An additional sample was collected on February 3, 2004 and analyzed for VOCs via EPA Method 524.2.

4.3.1 Groundwater Analytical Results

The analytical results were compared to the Method 1 GW-1/2/3 groundwater standards, as applicable. Exceedences of these standards are summarized below.

- Concentrations of the VPH C₅-C₈ aliphatic and C₉-C₁₀ aromatic hydrocarbon fractions, and naphthalene have consistently exceeded Method 1 GW-1/3 groundwater standards in samples collected from MW-8. Concentrations of benzene and ethylbenzene have periodically exceeded Method 1 GW-1 standards.
- Concentrations of MtBE have exceeded the Method 1 GW-1 groundwater standard in samples collected from MW-17 in four of the last five quarterly sampling events and in May 2001. During the June 2000 groundwater sampling event, the C₉-C₁₀ aromatic hydrocarbon fraction was detected at a concentration above the Method 1 GW-1 groundwater standard. No other exceedences of Method 1 GW-1 groundwater standards for compounds of concern have been detected in groundwater collected from MW-17 since September 1998.
- No contaminants of concern have been detected above Method 1 GW-1 standards in groundwater collected from MW-4 since September 1999, other than a one-time exceedence of the Method 1 GW-1 groundwater standard for MtBE in August 2003 and the VPH C₅-C₈ aliphatic hydrocarbon fraction in November 2001.
- No contaminants of concern have been detected above Method 1 GW-1 standards in groundwater collected from MW-10 or MW-14 since sampling of these wells commenced in 1990, other than a one-time exceedence of the Method 1 GW-1 standard for benzene in groundwater collected from MW-14 in April 1993.

The laboratory analytical results are tabulated with the historical groundwater analytical results and are presented in Appendix B. The laboratory analytical data packages for recent groundwater sampling events are attached as Appendix C.

4.3.2 Drinking Water Analytical Results

 No detectable contaminants of concern were indicated in the drinking water samples collected from the abutting Verizon property on June 19, 2003 and February 3, 2004.

4.4 IMMINENT HAZARD EVALUATION

Pursuant to 310 CMR 40.0006, an IH is defined as "a hazard which would pose a significant risk of harm to health, safety, public welfare or the environment if it were present for even a short period of time...." The definitive IH conditions identified in 310 CMR 40.0321(1) and the potential IH conditions identified in 310 CMR 40.0321(2) which may be applicable to the release are presented below in italics followed by Norfolk's Site-specific evaluation of whether the condition exists at the Site. Consistent with the DEP's *Guidance for Disposal Site Risk Characterization* and 310 CMR 40.0950, the quantitative IH evaluation considered only current uses of the Site.

A release to the environment which results in the presence of oil and/or hazardous material vapors within buildings, structures, or underground utility conduits at a concentration equal to or greater than 10% of the Lower Explosive Limit (LEL).

The release occurred crossgradient of the Site building, which has no basement. The measured depth to groundwater in monitoring wells located adjacent to the Site building has ranged from approximately 6 to 13 feet below grade, with a long-term average of approximately 8 feet below grade. No exceedence of Method 1 GW-2 Groundwater Standards has occurred within 30 feet of the Site building since 1998. Neither the Site operator nor Norfolk have received any reports of petroleum odors within the Site building or in any downgradient buildings or utility conduits.

A release to the environment of reactive or explosive hazardous material, as described in 310 CMR 40.0347, which threatens human health or safety.

Soil and groundwater impacts at the Site are the result of historical release(s) of gasoline. No NAPL has been detected at the Site since 1998, and residual impacted soil and groundwater are not expected to contain enough of the volatile components that would make it reactive or explosive, as defined in 310 CMR 40.0347.

A release to the environment of OHM which poses a significant risk to human health when present for even a short period of time, as specified in 310 CMR 40.0950.

The risk to human health, associated with current exposures to impacted soil and groundwater detected at the Site is evaluated in Section 4.4.1 below.

A release to the environment of OHM, which produces immediate or acute adverse impacts to freshwater or saltwater fish populations.

Impacted groundwater from the release is not located within 500 feet of a freshwater or saltwater body.

A release to the environment, which produces readily apparent effects to human health, including respiratory distress or dermal irritation.

Impacted soil and groundwater at the Site exists primarily beneath pavement. Norfolk has not observed or received reports of any readily apparent effects to human health in connection with the release at the Site.

A release to the environment indicated by the measurement of OHM in a private drinking water supply well at a concentration equal to or greater than ten times the Category RCGW-1 Reportable Concentration.

As detailed in Section 4.3.2, sampling and analysis of groundwater collected from the closest downgradient water supply well indicated no detectable concentration of any contaminant of concern.

A release to the environment for which estimated long-term risk levels associated with current exposures are greater than ten times the Cumulative Receptor Risk Limits in 310 CMR 40.0993(6). Past exposures may be included in such evaluations to the extent that it is reasonable to quantify those exposures.

The estimated long-term risk levels associated with current exposures to impacted soil and groundwater detected at the Site are evaluated in Section 4.4.1 below.

4.4.1 Risk to Human Health

Potential receptors to OHM at the Site include workers in the Site building, workers, utility workers, gas station customers, and trespassers. Exposures for these potential receptors are considered minimal or non-existent since a complete exposure pathway to impacted soil and groundwater does not exist. This is based upon the following:

The depth and limited extent of impacted soil and groundwater below grade.

The average depth to groundwater within the impacted area is approximately 8-9 feet below grade. Soil screening conducted during the installation of various soil borings and test pits at the Site consistently indicated minimal or non-detectable TOV readings from 0-6 feet below grade. Impacted soil and groundwater is limited to a small area in the southwest portion of the Site, nearly all of which is paved with asphalt.

In the event that excavation activities associated with utility repair or construction become necessary at the Site, Norfolk recommends that the risk of exposure to impacted soil and groundwater be managed by the development of a Soil Management Plan and Health and Safety Plan.

4.4.2 Risk to Safety

The characterization of risk to safety was evaluated at the Site based upon the criteria listed in 310 CMR 40.0960. The release-related conditions identified as posing a risk to safety in 310 CMR 40.0960(3) are set listed below in italics followed by Norfolk's Sitespecific evaluation of whether or not the condition exists at the Site.

The presence of rusted or corroded drums or containers, open pits, lagoons or other dangerous structures;

Based upon Norfolk's observations during response actions, there are no rusted or corroded drums or containers, open pits, lagoons or other dangerous structures at the Site.

Any threat of fire or explosion, including the presence of explosive vapors resulting from a release of OHM;

As described above, soil and groundwater impacts at the site are the result of historical release(s) of gasoline. No NAPL has been detected at the Site since 1998, and residual impacted soil and groundwater are not expected to contain enough of the volatile components that would make it explosive.

Any uncontained materials which exhibit the characteristics of corrosivity, reactivity or flammability described at 310 CMR 40.0347;

Residual impacted soil and groundwater does not exhibit the characteristics of corrosivity, reactivity or flammability described at 310 CMR 40.0347.

4.4.3 Risk to the Environment

The characterization of risk to the environment was evaluated based upon the criteria contained in 310 CMR 40.0955(3). The release-related conditions identified as posing a risk to the environment in 310 CMR 40.0955(3) are listed below in italics followed by Norfolk's site-specific evaluation of whether or not the condition exists at the Site.

Evidence of stressed biota attributable to the release at the disposal site, including, without limitation, fish kills or abiotic conditions;

Based upon Norfolk's observations, there is no evidence of stressed biota, fish kills or abiotic conditions attributable to the release at the Site or in the vicinity of the Site.

A release to the environment of OHM which produces immediate or acute adverse impacts to freshwater or saltwater fish populations;

There are no indications that OHM released at the Site has impacted surface water, and there are no fish populations located within 500 feet of the Site. Therefore, there are no indications that the release has resulted in immediate or acute adverse impacts to freshwater or saltwater fish populations

4.4.4 Imminent Hazard Evaluation Conclusions

Based upon Norfolk's evaluation, an IH does not currently exist at the Site.

4.5 CRITICAL EXPOSURE PATHWAY AND SUBSTANTIAL RELEASE MIGRATION EVALUATION

Pursuant to 310 CMR 40.0006, a Critical Exposure Pathway (CEP) is defined as those routes by which OHM released at a Site is transported, or is likely to be transported to human receptors via:

- (a) vapor-phase emissions of measurable concentrations of OHM into the living or working space of a pre-school, daycare, school or occupied residential dwelling; or
- (b) ingestion, dermal absorption or inhalation of measurable concentrations of OHM from drinking water supply wells located at and servicing a pre-school, daycare, school or occupied residential dwelling.

Pre-school, daycare, or other schools are not located within 500 feet of the release. Residential properties are located approximately 500 feet northeast of the Site and hydraulically cross-gradient. Impacts to residential living or working spaces are not known to exist. Sampling and analysis of groundwater collected from the nearest downgradient water supply well indicates no measurable concentration of any contaminant of concern. Based upon the current understanding of the Site conditions, a CEP is not evident at the Site.

Pursuant to 310 CMR 40.0006, a condition of Substantial Release Migration (SRM) means a condition at a Site that includes any of the following.

 Releases that have resulted in the discharge of separate-phase OHM to surface waters, subsurface structures, or underground utilities or conduits;

Based upon assessment activities conducted to date, there have been no discharges of NAPL to surface waters, subsurface structures, or underground utilities or conduits.

 Releases to the ground surface or to the vadose zone that, if not promptly removed or contained, are likely to significantly impact the underlying groundwater, or significantly exacerbate an existing condition of groundwater pollution;

Based upon Norfolk's assessment activities conducted to date, it is not likely that impacts in the vadose zone will significantly impact the underlying groundwater, or significantly exacerbate an existing condition of groundwater pollution. The continued operation of the SVE/AS system has served to reduce the contaminant mass.

 Releases to the groundwater that have migrated or are expected to migrate more than 200 feet per year;

Based upon Norfolk's assessment activities conducted to date, it is not likely that impacted groundwater will migrate over 200 feet in one year.

 Releases to the groundwater that have been or are within one year likely to be detected in a public or private water supply well;

No public water supply wells have been identified within 500 feet of the Site. Drinking water for the Site and vicinity is provided by private water supply wells. Sampling of downgradient water supply wells has not indicated the presence of contaminants of concern. Groundwater sampling data from on-Site groundwater monitoring wells installed downgradient of the release area has not indicated that off-Site contaminant migration has occurred. Therefore, it is unlikely that impacts to groundwater will be detected in a public or private water supply well.

 Releases to the groundwater that have been or are within one year likely to be detected in a surface water body, wetland, or public water supply reservoir, and

No surface water body, wetland or public reservoir has been identified within 500 feet of the Site. Groundwater monitoring data collected to date does not indicate that impacted groundwater has migrated off-Site.

 Releases to the groundwater that have or are within one year likely to result in the discharge of vapors into school buildings or occupied residential dwellings.

Based upon the limited extent of impacted groundwater, continued removal of contaminants at the Site by the SVE/AS system, and the absence of nearby school buildings or occupied residential dwellings, discharge of vapors into school buildings or residential dwellings is not likely.

Based upon the current understanding of the Site conditions, a condition of SRM does not exist at the Site.

5.0 MANAGEMENT OF REMEDIAL WASTE

Pursuant to 310 CMR 40.0424(1)(f) the management of remedial waste is described below.

5.1 AIR EMISSIONS/SPENT CARBON

Norfolk subcontracts Carbon Filtration Systems, Inc. (CFS) to remove spent granular activated carbon (GAC) used to treat SVE air emissions. GAC is replaced on an asneeded basis, based on the results of monthly emissions monitoring. The most recent carbon change-out was performed on March 1, 2004. Since the implementation of the IRA, approximately 26,000 pounds of spent GAC has been generated.

5.2 SOIL

Impacted soil has not been generated, stored on-Site, or transported off-Site since the implementation of the IRA.

5.3 WATER AND NON AQUEOUS PHASE LIQUID

Pursuant to 310 CMR 40.0045 (7), purged groundwater from monitoring well sampling is returned to the point of withdrawal at each well location. No NAPL has been collected, and/or disposed of since the implementation of the IRA.

7.0 FINDINGS AND CONCLUSIONS

On behalf of Carver Square Auto Services, Norfolk has prepared this IRA Completion Report and Imminent Hazard Evaluation pursuant to 310 CMR 40.0427, in connection with a release of OHM at the disposal site. Pursuant to 310 CMR 40.0427(1), an IRA shall be considered complete when the release which gave rise to the need for that IRA has been assessed, and where necessary, remediated in a manner and degree that will ensure, at a minimum:

- (a) the accomplishment of necessary stabilization of disposal site conditions;
- (b) the elimination or control of any Imminent Hazards (IH) to health, safety, public welfare, and the environment without the continued operation and maintenance of active remedial systems, pending the completion of any necessary comprehensive response actions; and
- (c) the elimination, prevention or mitigation of Critical Exposure Pathways (CEPs) without the continued operation and maintenance of active remedial systems, pending the completion of a risk characterization pursuant to 310 CMR 40.0900 and feasibility study pursuant to 310 CMR 40.0860.

Conditions at the Site fulfill these requirements, since Site conditions are stable, there is no IH to health, safety, public welfare, or the environment connected with the release, and no CEP exists at the disposal site. Remedial activities, including operation of the existing SVE/AS system, will continue to be conducted as a Comprehensive Response Action.

APPENDIX I PAULDING COMPANY REPORTS

THE PAULDING COMPANY, INC.

18 Pepperell Road P.O. Box 500 West Groton, MA 01472 508-448-2549

> Project 96553 September 13, 1997

Ms. Julie J. Hutcheson Department of Environmental Protection Southeast Regional Office 20 Riverside Drive Lakeville, MA 02347 RE: Carver -- BWSC 131 Main Street RTN 4-12848 C RTN 4-13333

Dear Ms. Hutcheson:

This letter and enclosures are sent in response to Notice of Responsibility (NOR) letter addressed to Richard Nantais and dated August 11, 1997.

As can be seen from the enclosed copy of the Certified Mail envelope, Mr. Nantais received this NOR on August 26, 1997.

Background Information

The NOR states that concentrations of benzene were found in the drinking water well located at 132 Main Street and that, because of the estimated direction of groundwater flow toward South Meadow Brook, the gasoline station located at 131 Main Street is a potential source of the benzene.

The relative locations of 131 and 132 Main Street are shown in Figure 1, which is a copy of a portion of the USGS topographic map of the Plympton quadrangle. Note that the locations of the private residences at 133 and 134 Main Street have also been identified. The approximate scale of Figure 1 is one inch equals 2083 feet.

Figures 2 and 3 are, respectively, portions of the Carver Assessor's Maps. Figure 2 shows the relative locations and dimensions of the properties of 131 Main Street (shown on the Figure 2 as Parcel 17) and 133 Main Street (Parcel 18). Similarly, Figure 3 shows the locations of 132 Main Street (Parcel 1) and 134 Main Street (Lot 2). The approximate scale of Figures 2 and 3 is 1 inch equals 100 feet. Figures 2 and 3 can be juxtaposed at the location of the 20-foot jog along the west side of Main Street, 175 feet south of Lot 18.

Proposed IRA Scope and Schedule

The NOR contains the requirement that an Immediate Response Action (IRA) Plan be submitted within 21 days of receipt of the NOR. The minimum requirements of the IRA Plan are provided on pages 3 and 4 of the NOR. This proposed IRA Plan, the components of which are described below, includes those items.

(1) Sample the drinking water wells at 133 and 134 Main Street

Given that these two properties are generally downgradient from the gasoline station at 131 Main Street, it is appropriate to sample the water from each residence and analyze the water for volatile organic compounds, such as those that might originate from gasoline.

Toward that end, following notification of the Carver Board of Health, samples of water from each residence were obtained on September 9, 1997 and the samples were delivered to Analytical Balance Corp. in Middleboro. Their analysis of the water samples, by EPA Method 502.2, should be completed by September 18 and the results will be delivered to the occupants of those two residences. Copies of both analyses will also be forwarded to your office as soon as they are available.

(2) History of Use of the Subject Property

The station was constructed in 1945 by William R. Holmes and the property has been operated as a gasoline station since that time. The original building was the southern portion of the existing structure and the original gasoline tanks were abandoned and are presently beneath the newer portion of the building which was constructed about 1979. In addition to the sale of gasoline, the property was used by Mr. Holmes as an automotive repair facility. Although never a junk yard as stated in the NOR, automobiles and automobile parts were stored on the property as they awaited either repair, reuse or transport elsewhere.

In 1960 or 1961, Mr. Holmes installed three 4000-gal steel tanks which were centered in the approximate location of the existing groundwater monitoring well. The property was purchased by Richard Nantais in 1978 and these three tanks were removed in 1979 at which time three new steel tanks were installed at the same location. Then, in 1989, these three steel tanks were removed and four double-walled fiberglass tanks were installed at the locations shown in Figure 4.

(3) Reportable Concentrations of Groundwater Contamination

It is important to note that at the time of removal of the three steel tanks in 1989, careful inspection, by visual examination and odor, by both the contractor (Dennison Oil) and the representative of the Carver Fire Department found no evidence of a release of gasoline. However, examination of the soil samples obtained during installation of the existing monitoring well indicated a hydrocarbon odor and recent testing of the groundwater from this monitoring well, conducted in July 1997, indicated concentrations of benzene, MTBE and TPH above the applicable reportable concentrations.

A copy of the test results, which were brought to my attention on September 7, is appended. I explained the significance of the results to Richard Nantais on the morning of September 8 and, as can be seen from the enclosed Release Notification Form (BWSC-103), the conditions were reported to the DEP, by telephone, less than an hour later.

(4) Identification of Potential Sources of Groundwater Contamination

Figure 4 is a schematic drawing of the subject property at 131 Main Street and portions of the adjacent properties at 133 and 132 Main Street. The approximate scale of Figure 4 is one inch equals 50 feet.

The locations of the potential sources of groundwater contamination at 131 Main Street are shown as are other features pertinent to the proposed investigation. The potential sources of contamination consist of (a) the septic leaching system where gasoline contamination may have entered the wash sink from hand-washing, (b) the pump island where a release of gasoline occurred a few years ago at the southern pump, (c) the two 1000-gal gasoline tanks which were abandoned in 1960 (and which are partially beneath the building), and (d) the former location of three 4000-gal gasoline tanks which were removed in 1989 (which is the location of the existing groundwater monitoring well).

The existing underground storage tanks are not considered to be potential sources of contamination: They are double-walled fiberglass with interstitial monitoring systems. Similarly, the existing pipes which go from the tanks to the pumps are double walled and are not considered to be sources of groundwater contamination.

(5) Proposed Subsurface Investigation

One portion of the IRA Plan is to determine if any of the features noted above as potential sources are, in fact, actual sources of groundwater contamination. It is also considered appropriate to determine whether or not groundwater contamination exists downgradient of the gasoline station, given that it has been documented at the existing monitoring well. Toward this end, it is proposed to install small-diameter groundwater monitoring wells at

the four locations on the west side of Main Street noted by the small squares in Figure 4. The proposed well at the north end of the property is to serve as an upgradient well.

It is also proposed to determine if there is evidence of groundwater contamination between the gasoline station at 131 Main Street and the drinking water well at 132 Main Street. Toward that end, it is proposed to install two small-diameter monitoring wells on the property of William Holmes at the locations of the two small squares east of Main Street.

The soil samples obtained during the advance of the microwells will be examined for odor as evidence of hydrocarbon contamination. Samples which evidence such contamination will be analyzed according to the VPH/EPH criteria in order to document the concentrations of hydrocarbons in the soil. Groundwater samples will be obtained from all six of the microwells and the samples will be analyzed for volatile organic compounds according to EPA Method 8260.

Following installation of the six microwells, they will be surveyed and gauged so that the local directions of groundwater flow can be determined.

(6) Analytical Results Of Drinking Water Well at 131 Main Street

This drinking water well has been sampled and analyzed on three occasions: September 12, 1996; July 6, 1997 and August 14, 1997. As can be seen from the enclosed results, the waters have consistently met the GW-1 drinking water quality standards.

(7) Compliance of the Underground Storage Facility With Regulations

As can be seen from the enclosed Permit, which will be in effect until March 22, 1999, the underground storage tanks at 131 Main Street are in compliance with 527 CMR 9.00.

According to the Chief of the Carver Fire Department, tightness testing of the storage system is not required because the storage facility consists of double walled tanks which are monitored continuously by means of a Veeder-Root interstitial monitoring system.

(8) Proposed Schedule for the Subsurface Investigation

Arrangements will be made this coming week to secure the services of a qualified drilling contractor to install the proposed microwells. Based on their availability, it is expected that the wells can be installed prior to or during the first week of October. A few days after installation the wells will be surveyed, gauged and sampled. Consequently, it is expected that the results of the analyses of soil and groundwater samples will be available prior to the end of October.

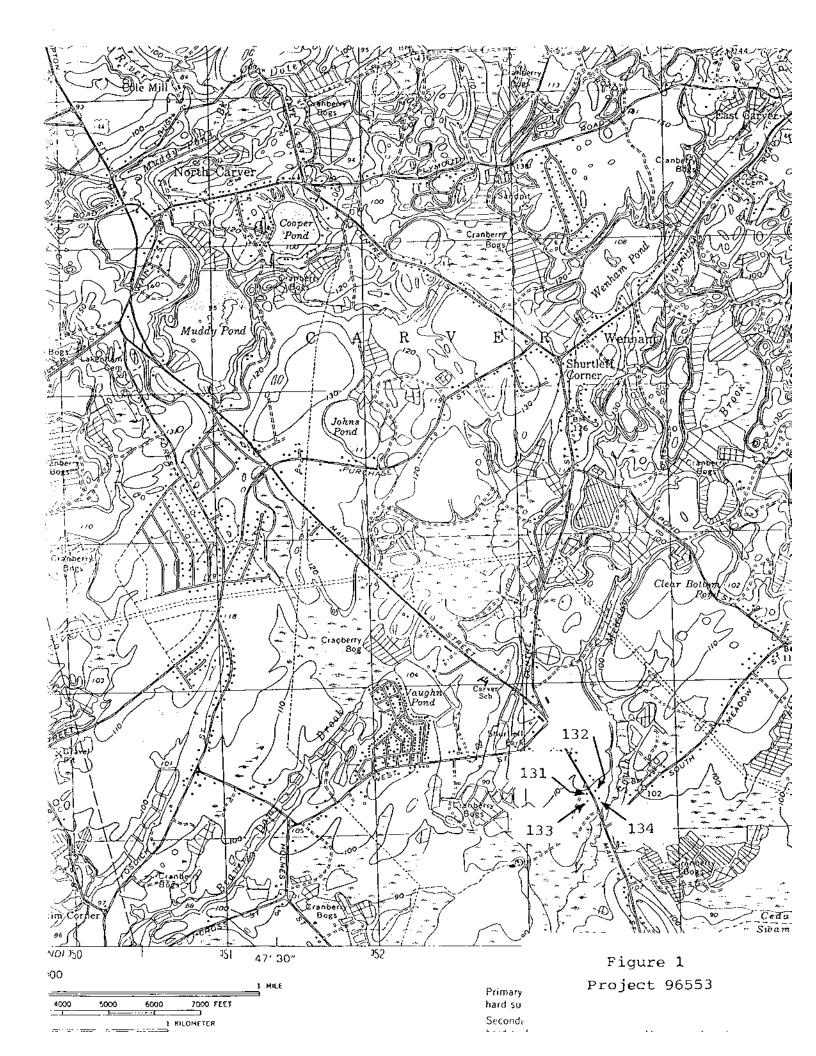
A report summarizing the results of the subsurface investigation will be provided to your office prior to or during the second week of November.

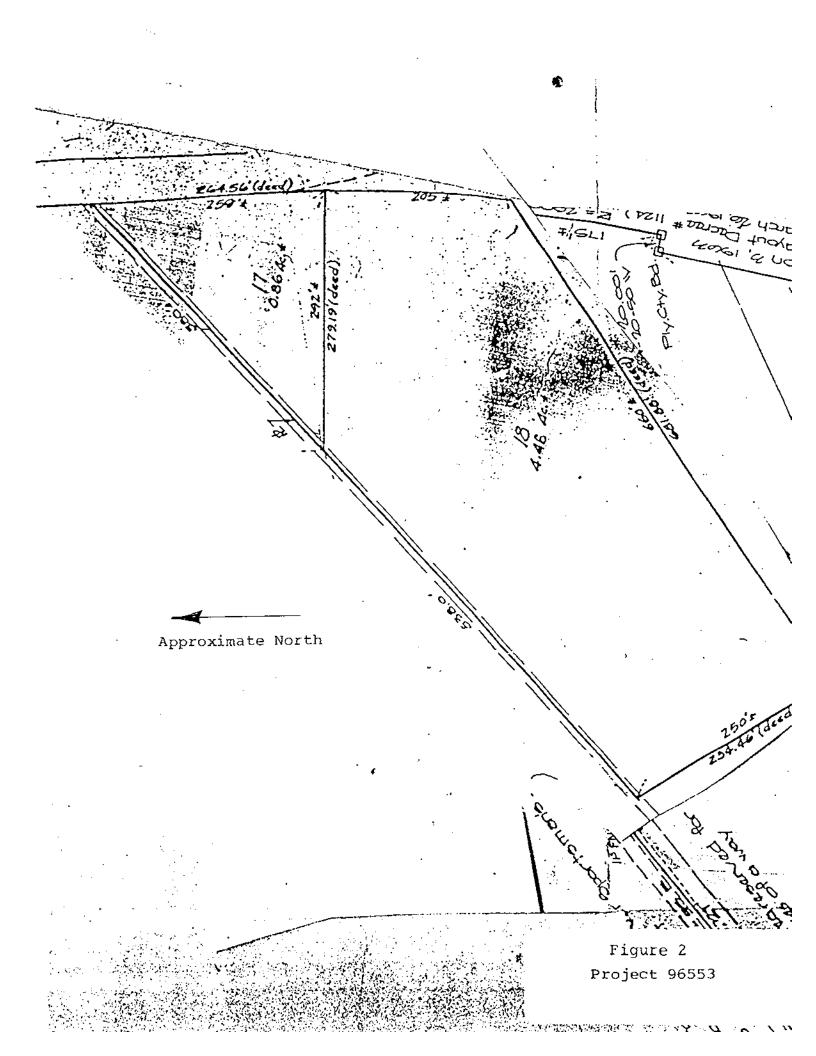
Closure

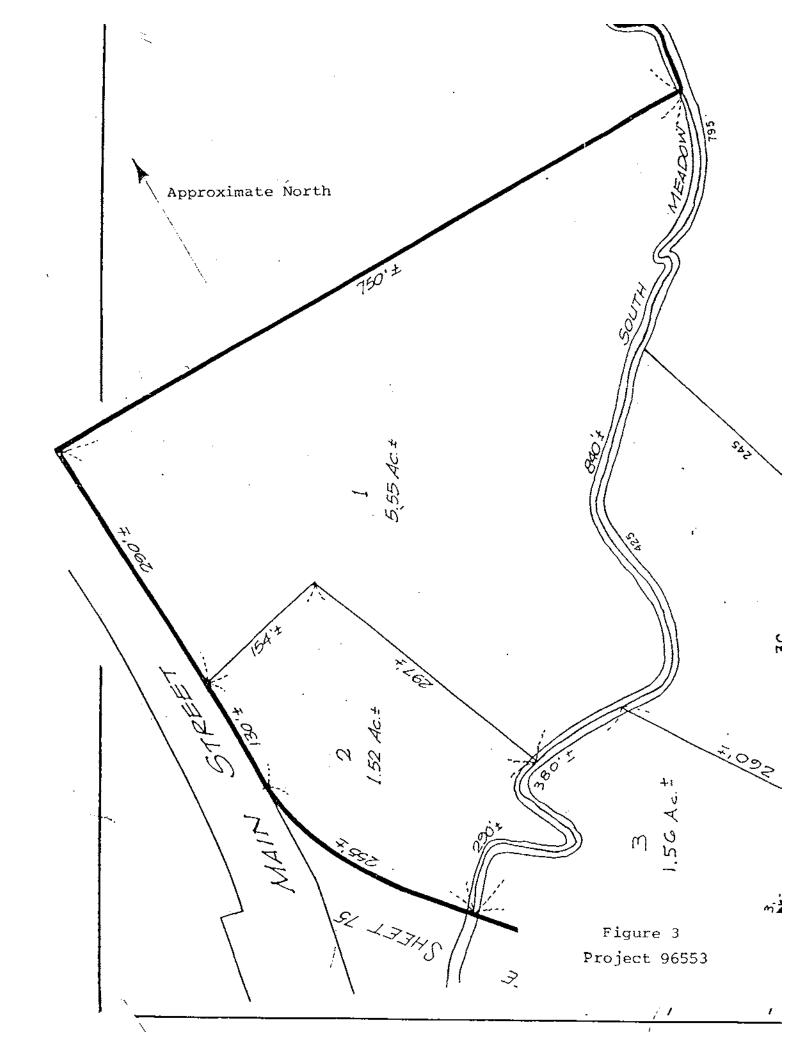
I hope you find this letter and enclosures adequate for your purposes. If not, or if you have any questions or suggestions, please do not hesitate to contact either myself or Richard Nantais. His telephone number is 508-866-4582.

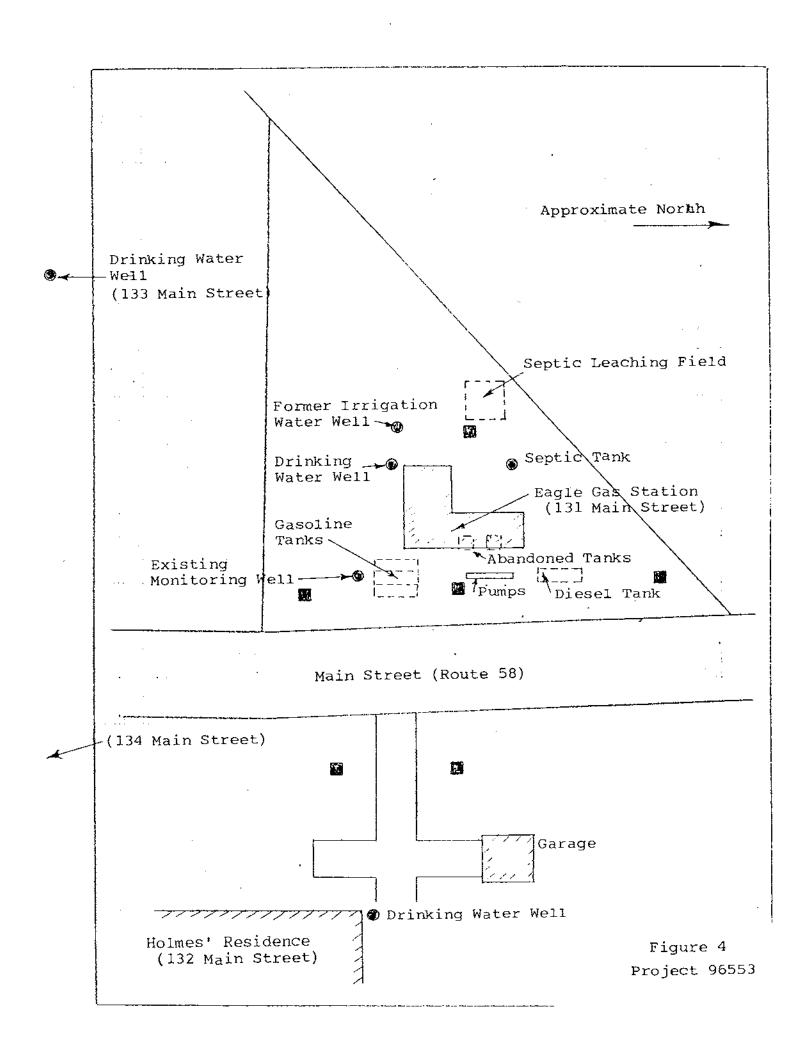
Sincerely,

THE PAULDING COMPANY, INC.


Bartlett W. Paulding Jr., PhD


Consulting Geologist


Registered Professional Engineer (Mass. No. 24420)


Licensed Site Professional (Mass. No. 7266)

cc: Richard Nantais P.O. Box 478 Carver, MA 02330

ASTM METHOD D3328-78 (Modified) Hydrocarbon Fingerprinting (GC/FID)

Field ID:

Monitoring Well

Project:

Eagle Gas

Client: Cont/Prsv: Theodore L. Bosen 1L Glass/H2S04 Cool

Matrix:

Aqueous

Lab ID: 17253-03 Batch ID: HF-0698-F

Batch 10: HF-0698-F Sampled: 07-06-97 Preserved: 07-08-97 Received: 07-08-97

Extracted: 07-10-97 Analyzed: 07-11-97

Qualitative Identification

This sample has LGC/FID characteristics that are similar to Gasoline.

<u>Quantification</u>

PARAMETER		CONCENTRATION (mg/L	• •	REPORTING LIMIT (mg/L)
Total Petroleum Hydrocarbo	ns	1.	3	0.6
QC SURROGATE COMPOUND	SPIKED 0.045	MEASURED 0.036	RECOVERY 80 %	QC LIMITS 60 - 140 %

BRL = Below Reporting Limit. Method Reference: Method D3328-78 (Modified) - Comparison of Waterborne Petroleum Oils by Gas Chromatography, Volume 11.02 Water, American Society for Testing and Materials, Reapproved (1982).

GROUNDWATER ANALYTICAL

EPA METHOD 8020 Volatile Aromatics (GC/PID)

17253-01 Lab ID: Monitoring Well VG1-1095-W Batch ID: Field ID: 07-06-97 Eagle Gas Sampled: Project: Theodore L. Bosen 07-08-97 Client: Received: 1L Glass/HC1 Cool 07-19-97 Analyzed: Cont/Prsv:

Matrix: Aqueous

PARAMETER		CONCENTRAT	ION (/L)	REPORTING LIMIT (ug/L)
Methyl tert-butyl Ether * Benzene Toluene Chlorobenzene Ethylbenzene meta-and para-Xylene ortho-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene		4,000 93 15 150 200 140	e BRL BRL BRL BRL	10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
QC SURROGATE COMPOUND	SPIKED	MEASURED	RECOVERY	QC LIMITS 87 - 113 %
a,a,a-Trifluorotoluene	30	30	99 76	

e = Analyte response exceeded calibration range. Analyte result is an estimate. Analyte response was not attenuated to maintain maximum detectability of other target analytes. Elevated reporting limit due to required sample dilution. BRL = Below Reporting Limit. * Non-target compound. Method References: Method 8020 - Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, US EPA SW-846, Third Edition (1986).

· ·			

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC-103

Release Tracking Number

4 - 13333

RELEASE NOTIFICATION & NOTIFICATION RETRACTION

FORM Pursuan	t to 310 CMR 4	0.0335 and 310	CMR 40,03	71 (Subpart	(C)	If assigned by DEP
A. RELEASE OR THREAT OF RELE Street: 131 MAIN STREET			Location A	kd:		
City/Town: CARVER_		-		OZ:	330	
B. THIS FORM IS BEING USED TO:	(check one)					
Submit a Release Notification (con	nplete all sections	of this form).			-	·
Submit a Retraction of a Previousi form). You MUST attach the supporting	y Reported No documentation re	otification of a Rel equired by 310 CMR	ease or Three 40,0335.	t of Release ((complets Si	ections A, B, E, F and G of this
C. INFORMATION DESCRIBING THE	RELEASE O	R THREAT OF R	ELEASE (T	OR):	Dr.s.	
Date and time you obtained knowledge of the						Specify: 🗹 AM 📗 PM
The date you obtained knowledge is alway	s required. The	time you obtained	i knowledge i			
IF KNOWN, record date and time release or T	OR occurred. Di	ste:	Time	:	·	Specify: AM PM
Check here if you previously provided an					* -	
Provide date and time of Oral Notification	. Data: 4	8197	Time	9:15	AM	Specify: AM D PM
Check at Notification Thresholds that apply to	the Release or T	hreat of Release:	(for more in	formation see	310 CMR	10.0310 - 40.0315)
2 HOUR REPORTING CONDITIONS	72 HOUR REP	ORTING CONDITIO	NS 120	DAY REPO	RTING CON	ROMONS
Sudden Release		e Non-Aqueous Pha .PL) Equal to or Grea				Material(s) to Soil or
Threat of Sudden Release	1/2 Inch	irt) Equalio de Gra	rica franti	Concentrati		Reportable
Oli Sheen on Surface Water	Undergrou	nd Storage Tank (U	sτ) [Release of	Of to Soil Ex	rceeding Reportable Recting More than 2 Cubic
Poses Imminent Hazard	☐ Threat of t	JST Release		Yards	on (o) una n	TOTAL DELLE COOK
Could Pose Immhent Hazard				Release of Concentrati		dwater Exceeding Reportable
Release Detected in Private Well.	Water Sur	Groundwater near oply			• •	
Release to Storm Drain	1 1 '	Groundwater near	۱۱	Equal to or	Greater than	us Phase Liquid (NAPL) 11/8 Inch and Less than 1/2
Sanitary Sewer Release	School or	Residence		inch		
(Imminent Hazard Only)	· · · · · · · · · · · · · · · · · · ·	·				
List below the Oils or Hazardous Materials that if necessary, attach a fist of additional Oil and	it exceed their Re Hazardous Mater	portable Concentration in substances subje	on or Reportat ect to reporting	ole Quantity b I.	y the greater	st amount.
Name and Quantities of Olis (O) and Hazardo	us Materials (HM) Released:				
O or HM Released	O_HM (check one)	,	Amount or oncentration	Units		Reportable Concentrations Exceeded, If Applicable -1, RCS-2 (RCGW-1) RCGW-2)
BENZENE.		(73 ADD	ppb		5 ppb
HTBE	.00/		000	ppb		100 ppb
TPH	.do		1.3	ppm		1 ppm
D. ADDITIONAL INVOLVED PARTIE	3:	<u> </u>				
Check bers if attaching names and address submitting this Release Notification (requ		of properties affected	by the Releas	ie or Threet o	Relosse, o	ther than an owner who is
	-	neme and address to	ontlones.			
Check here if attaching Licensed Site Pr	to account (CSP)	ddragan on the h	ynniaij.		, 	_

Massachus 's Department of Environmental Stection'

BWSC-103

Release Tracking Number

If assigned by DEP

RELEASE NOTIFICATION & NOTIFICATION RETRACTION FORM Pursuant to 310 CMR 40.0335 and 310 CMR 40.0371 (Subpart C)

4-13333

E. PERSON REQUIRED TO NOTIFY: Name of Organization: _ RICHARD NANTAIS THE Name of Contact: PO. BOX 478 Street: CRYTOWN: CARVER State: MA ZIP Code: 02330 Telephone: 508-866-4582 Ext.: _____ FAX: (optional) ___ F. RELATIONSHIP OF PERSON REQUIRED TO NOTIFY TO RELEASE OR THREAT OF RELEASE: (check one) V RP or PRP Specify: V Owner O Operator O Generator O Transporter Other RP or PRP: ___ Fiduciary, Secured Lender or Municipality with Exempt Status (as defined by M,G,L, c. 21E, s. 2) Agency or Public Utility on a Right of Way (as defined by M.G.L. c. 21E, s. 5()) Any Person Otherwise Required to Notity Specify Relationship: G. CERTIFICATION OF PERSON REQUIRED TO NOTIFY: RICHARD NANTAIS _, attest under the pains and penalties of perjury (I) that I have personally examined and am familiar with the information contained in this submittal, including any and all documents accompanying this transmittal form, (ii) that, besed on my inquiry of those incluiduals immediately responsible for obtaining the information, the material information contained in this submittal is, to the best of my knowledge and belief, true, accurate and complete, and (iii) that I am fully authorized to make this attestation on behalf of the entity legally responsible for this submittal. Whe person or entity on whose behalf this submittal is made anyls aware that there are significant penalties, including, but not limited to. possible fines and imprisonment, for willfully submitting false, inaccurate, or incomplete information. Hantais Too: owo FOR MULLARD NANTAIS Date: 9/9/97 (print name of person or entity recorded in Section E) Enter address of the person providing certification, if different from address recorded in Section E: Street State: ZIP Code; Ext.: FAX: (optional) Telephone: ___ YOU MUST COMPLETE ALL RELEVANT SECTIONS OF THIS FORM OR DEP MAY RETURN THE DOCUMENT AS INCOMPLETE. IF YOU SUBMIT AN INCOMPLETE FORM, YOU MAY BE PENALIZED FOR MISSING A REQUIRED DEADLINE. BARTUET W. PAULDING JR. 18 PERPEREU ROAD

p.o. box 500

WEST GROTON, MA 01472

Massach tts Department of Environment: Protection Bureau of waste Site Cleanup

BWSC-105

IMMEDIATE RESPONSE ACTION (IRA)

Release	Tracking	Numbe
---------	----------	-------

TRANSMITTAL FORM Pursuant to 310 CMR 40.0424 - 40.0427 (Subpart D)

4 - 13333

A. RELEASE OR THREAT OF RELEASE LOCATION:							
Release Name: (optional)	· · · · · · · · · · · · · · · · · · ·						
Street: 131 MAIN STREET (ROUTE 58)	Location Aid:						
City/Town: CARVER	ZIP Code: 02330						
Check here if a Tier Classification Submittal has been provided to DEP for this R	lelease Tracking Number.						
Check here if this location is Adequately Regulated, pursuant to 310 CMR 40.01	10-0114.						
Specify Program: CERCLA HSWA Corrective Action Solid Waste Management RCRA State Program (21C Facilities)							
Related Release Tracking Numbers That This IRA Addresses:							
B. THIS FORM IS BEING USED TO: (check all that apply)							
Submit an IRA Plan (complete Sections A, B, C, D, E, H, I, J and K).							
Check here if this IRA Plan is an update or modification of a previously app	roved written IRA Plan. Date Submitted:						
Submit an Imminent Hazard Evaluation (complete Sections A, B, C, F, H, I, J	and K).						
Submit an IRA Status Report (complete Sections A, B, C, E, H, I, J and K).							
Submit a Request to Terminate an Active Remedial System and/or Terminal Imminent Hazard (complete Sections A, B, C, D, E, H, I, J and K).	ate a Continuing Response Action(s) Taken to Address an						
Submit an IRA Completion Statement (complete Sections A, B, C, D, E, G, H,							
You must attach all supporting documentation required for e any Legal Notices and Notices to Public Officia	each use of form indicated, including copies of als required by 310 CMR 40.1400.						
C. RELEASE OR THREAT OF RELEASE CONDITIONS THAT WARRA							
	oundwater Surface Water Sediments V Soil						
Wetland Storm Drain Paved Surface ✓ Private Well	Public Water Supply Zone 2 Residence						
School Unknown Other Specify:							
Identify Conditions That Require IRA, Pursuant to 310 CMR 40.0412: (check all that	at appty) 2 Hour Reporting Condition(s)						
72 Hour Reporting Condition(s) Substantial Release Migration	· · · · · · · · · · · · · · · · · · ·						
2000	GW-1 IN A MONITORING WELL						
LOCATED LESS THAN 500' FROM P	RIVATE WATER WELLS.						
Identify Oils and Hazardous Materials Released: (check all that apply)	Dils Chlorinated Solvents Heavy Metals						
Others Specify:							
D. DESCRIPTION OF RESPONSE ACTIONS: (check all that apply)							
Assessment and/or Monitoring Only	Deployment of Absorbent or Containment Materials						
Excavation of Contaminated Soils	Temporary Covers or Caps						
Re-use, Recycling or Treatment	Bioremediation						
On Site Off Site Est. Vol.:cubic ya	ards Soil Vapor Extraction						
Describe:	Structure Venting System						
Store On Site Off Site Est. Vol.: cubic yz	ards Product or NAPL Recovery						
Landfill Cover Disposal Est. Vol.: cubic ya							
Removal of Drums, Tanks or Containers	Air Sparging						
Describe:	Temporary Water Supplies						
SECTION D IS CONTINUED ON							

Massachuse''s Department of Environmental Protection Bureau of W. ... e Site Cleanup

BWSC-105

Release Tracking Number

IMMEDIATE RESPONSE ACTION (IRA)
TRANSMITTAL FORM Pursuant to 310 CMR 40.0424 - 40.0427 (Subpart D)

4-13333

D. DESCRIPTION OF RESPONSE ACTIONS (continued):	
Removal of Other Contaminated Media	Temporary Evacuation or Relocation of Residents
Specify Type and Volume:	Fencing and Sign Posting
Other Response Actions Describe:	
Check here if this IRA involves the use of innovative Technologies (DEP is interested in Technologies Clearinghouse).	using this information to aid in creating an Innovative
Describe Technologies:	
E. TRANSPORT OF REMEDIATION WASTE: (if Remediation Waste has been se	ent to an off-site facility, answer the following questions)
Name of Facility:	
Town and State:	
Quantity of Remediation Waste Transported to Date:	
F. IMMINENT HAZARD EVALUATION SUMMARY: (check one of the following	g)
Based upon an evaluation, an Immlnent Hazard exists in connection with this Release o	or Threat of Release.
Based upon an evaluation, an Imminent Hazard does not exist in connection with this Re	
Based upon an evaluation, it is unknown whether an Imminent Hazard exists in connect assessment activities will be undertaken.	
Based upon an evaluation, it is unknown whether an Imminent Hazard exists in connect response actions will address those conditions that could pose an Imminent Hazard.	tion with this Release of Threat of Release. However,
G. IRA COMPLETION STATEMENT:	
Check here If future response actions addressing this Release or Threat of Release will for a Site that has already been Tier Classified under a different Release Tracking Num described in 310 CMR 40.0600 (i. e., a Transition Site, which includes Sites with appropriate applicable to the earlier Release Tracking Number (i. e.)	aber, or a Site that is identified on the Transition List as aved Waivers). These additional response actions must
State Release Tracking Number (i. e., Site ID Number) of Tier Classified Site or Transit	tion Site:
If any Remediation Waste will be stored, treated, managed, recycled or reused at Statement, you must submit either a Release Abatement Measure (RAM) Plan or a appropriate transmittal form, as an attachment to the	a Phase IV Remedy Implementation Plan, along with the
H. LSP OPINION:	
Lattest upday the pales and panalting of particulated have personally examined and am (amil	liar with this transmittal form, including any and all

Lattest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and (iii) the provisions of 309 CMR 4.03(5), to the best of my knowledge, information and belief,

- if Section B of this form indicates that an Immediate Response Action Plan is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000 and (iii) complies(y) with the Identified provisions of all orders, permits, and approvals identified in this submittal;
- If Section B of this form Indicates that an Imminent Hazard Evaluation is being submitted, this Imminent Hazard Evaluation was developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40,0000, and all assessment activities(y) undertaken to support this Imminent Hazard Evaluation complies(y) with the applicable provisions of M.G.L. c. 21E and 310 CMR 40,0000;
- If Section B of this form indicates that an immediate Response Status Report is being submitted, the response action(s) that is (are) the subject of this submittal (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000 and (iii) complies(y) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- If Section B of this form indicates that an Immediate Response Action Completion Statement or a Request to Terminate an Active Remedial System and/or Terminate a Continuing Response Action(s) Taken to Address an Imminent Hazard is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40,0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40,0000 and (iii) complies(y) with the identified provisions of all orders, permits, and approvals identified in this submittal.

SECTION H IS CONTINUED ON THE NEXT PAGE.

Massach atts Department of Environment: Protection Bureau of .vaste Site Cleanup

BWSC-105

Release Tracking Number

IMMEDIATE RESPONSE ACTION (IRA)

TRANSMITTAL FORM Pursuant to 310 CMR 40.0424 - 40.0427 (Subpart D)

4 - 13333

H. LSP Opinion (commuted).	· · · ·
I am aware that significant penaities may result, including, but not limited to, possible inaccurate or materially incomplete.	e fines and imprisonment, if I submit information which I know to be false
Check here if the Response Action(s) on which this opinion is based, if any, ar DEP or EPA. If the box is checked, you MUST attach a statement identifying t	e (were) subject to any order(s), permit(s) and/or approval(s) issued by the applicable provisions thereof.
LSP Name; BARTLET W. PAULDING JR LSP#: 7266	Stamp: JANTH OF MASS.
Telephone: 508-448-2549 Ext.:	
FAX: (optional)	NO. 7286 O F
FAX: (optional) Signature: Mulaulduig 7.	NO. 7286 O THE PROPERTY OF SITE PROPERTY.
Date: SEPT. 13, 1997 U	Minne
I. PERSON UNDERTAKING IRA:	
Name of Organization:	(D)
Name of Contact: RICHARD NANTAIS	Title: WNER
Street: P.O. BOX 478	
CHY/TOWN: CARVER	State: MA ZIP Code: 02330
Telephone: 508-866-4582 Ext.:	FAX: (optional)
Check here if there has been a change in the person undertaking the IRA.	
J. RELATIONSHIP TO RELEASE OR THREAT OF RELEASE OF PE	
RP or PRP Specify: (V Owner) Operator () Generator () 1	ransporter Other RP or PRP:
Fiduciary, Secured Lender or Municipality with Exempt Status (as defined by I	M.G.L. c. 21E, s. 2)
Agency or Public Utility on a Right of Way (as defined by M.G.L. c. 21E, s. 50))
Any Other Person Undertaking IRA Specify Relationship:	
K. CERTIFICATION OF PERSON UNDERTAKING IRA: [(LICHARO NANTAIS attest under the pains :	and penalties of perjury (i) that I have personally examined and am
familiar with the information contained in this submittal, including any and all docum of those individuals immediately responsible for obtaining the information, the mater knowledge and belief, true, accurate and complete, and (iii) that I am fully authorize this submittal. If the person or entity on whose behalf this submittal is made am/is a possible fines and Imprisonment, for willfully submitting false, inaccurate, or incomp	nents accompanying this transmittal form, (ii) that, based on my inquiry it information contained in this submittal is, to the best of my d to make this attestation on behalf of the entity legally responsible for ware that there are significant penalties, including, but not limited to,
•	Tille: OWNER
By:(signature)	Title: Oooka
FOI RICHARD NANTAIS	Date:
(print name of person or entity recorded in Section I)	
Enter address of the person providing certification, if different from address record	ed in Section I:
Street:	_
City/Town:	
Telephone:Ext.:	FAX: (optional)
YOU MUST COMPLETE ALL RELEVANT SECTIONS OF TH INCOMPLETE. IF YOU SUBMIT AN INCOMPLETE F A REQUIRED D	ORM, YOU MAY BE PENALIZED FOR MISSING
	•

	-		
~ .			

MASS DEFT ATTN: JULIE HUTZHESON

18 Pepperell Road P.O. Box 500 West Groton, MA 01472 978-448-2549

Richard S. Nantais P.O. Box 478 Carver, MA 02330

RTN 4-13333

Dear Mr. Nantais:

The purpose of this letter is to describe the endeavors associated with the abandonment of two 1000-gallon underground tanks at the property located at 131 Main Street in Carver, Mass.

Location and Description of Tanks – The tanks were installed in the mid-1940s, prior to construction of the right hand (i.e., northern) portion of the existing building. As noted in Figure 4 of my letter of September 13, 1997 to Julie Hutcheson of the Massachusetts DEP, the major portion of the two tanks were located beneath the northern portion of the building.

The tanks were made of steel, had a capacity of 1000-gallons each and had been used for the storage of gasoline until about 1961 when three new tanks were installed at the location of the present tank field.

Because of the location of the tanks, it was determined at the outset that the tanks could not be removed without jeopardizing the foundation of the existing building. Therefore, in keeping with the policies of the State Fire Marshall and the Carver Fire Department, it was decided to uncover the tanks, remove their contents, if any, and fill the emptied tanks with a concrete slurry.

Summary of Abandonment Activities – A Permit for the abandonment of the two tanks was obtained from the Carver Fire Department. A copy of the Permit is appended.

Enviro-Safe Corporation of Sandwich, MA was the contractor which located and uncovered the tanks. The two tanks were centered about the pedestrian doorway which enters the northern portion of the building. The tanks were located with their long axis perpendicular to the highway, with about 8 feet of the 11-foot length of each tank beneath the building. The tanks had a diameter of 4 feet and bottomed at a depth of between 6 and 7 feet.

The tanks were nearly filled with water which had an odor of gasoline but no measurable LNAPL. The water was pumped out by Enviro-Safe and delivered, under Manifest, to Clean Harbors Inc, in Braintree, MA. As can be seen from the copy of the Manifest which is appended, about 1700 gallons of water were pumped from the two tanks.

The conditions associated with the emptied tanks were observed by the Chief of the Fire Department and the decision was made to fill the tanks with an excavatable concrete in the event that the tanks would be excavated and removed in the future during any major remodeling of the service station. Consequently, 10 cubic yards of Controlled Density Fill were delivered by Lakeville Redi-Mix Inc. of South Carver, MA and placed into the two tanks.

Following the filling of the tanks, the soils which had been excavated were replaced and compacted in place to assure protection of the foundation of the building.

Sampling and Testing of Soils Adjacent to the Tanks — Samples of soil were obtained from locations adjacent to the bottoms of the two tanks prior to filling the tanks with the concrete slurry. The samples were moist due to the fact that the depth of the groundwater table coincided approximately with the bottom of the tanks. The sample from the left (i.e., southern) tank had a pronounced hydrocarbon odor whereas the sample from the other tank had no discernable odor. There was no indication of soil contamination in the shallower soils which had been excavated.

The soil samples were iced and delivered to Alpha Analytical Laboratories with the request that they be analyzed according to the Volatile Petroleum Hydrocarbons (VPH) protocols. The results obtained by Alpha are appended. Note that, for the soil sample from the left (i.e., southern) tank, the concentrations of certain hydrocarbon ranges exceed the Reportable Concentrations for S-1 soils and the S-3/GW-1 Method 1 Standards.

Discussion of Test Results – The occurrence of soil contamination adjacent to the left tank suggests that a release had occurred from that tank by either overfilling or a leak. Given that this tank is generally upgradient of monitoring well BP-9 provides an explanation of the origin of the groundwater contamination in that well. Therefore, this is not a new release and the consequences of it have already been reported to the DEP and described in earlier correspondence.

It is worthwhile to compare the conditions in the soil sample from the base of the left tank with the soils samples from the test boring associated with monitoring well BP-5. Note in the appended table from the Phase II Report, dated January 28, 1998, that the chemistry of the soil sample designated as BP-5,S-2A is essentially the same as that obtained from the base of the left (i.e., southern) tank. Consequently, I would conclude that the conditions encountered during the abandonment of the two tanks is no worse than the conditions reported earlier to the DEP.

In net, the conditions encountered during this abandonment process are essentially the same as had been described earlier and there is no reason to re-consider the appropriateness of the Class C Response Action Outcome which was submitted to the DEP on February 4, 1998.

Inability to Excavate Contaminated Soil – As noted above, the soil which had been excavated was replaced in the excavation. The question may arise as to why an attempt was not made to excavate the contaminated soil rather than leave it in place. The answer is that the excavation of the contaminated soil adjacent to the left tank would have jeopardized the foundation of the building. The soil consisted of a clean fine sand which quickly becomes unstable when excavations are attempted below the groundwater table. As noted above, the contamination was not present in the soil until the approximate depth of the groundwater. And at this point, the soil began to slump into the excavation made to obtain the soil sample. Given the risk to the integrity of the building, it was considered imprudent to attempt even a partial excavation of the impacted soils.

Submit Reports to the Carver Fire Department and the Massachusetts DEP – I would suggest you send a copy of this report to the Chief of the Carver Fire Department in response to his request. I suggest you also send a copy to Julie Hutcheson of the Massachusetts DEP in order to keep their files complete on the environmental conditions of your former property.

Closure – I hope you find this report helpful in your endeavors to address the environmental issues associated with the property at 131 Main Street in Carver. If you have any questions or require additional information, do not hesitate to contact me.

Sincerely,

THE PAULDING COMPANY, INC.

Bartlett W. Paulding Jr., PhD

Consulting Geologist

Buraneding to

Registered Professional Engineer (Mass. No. 24420)

Licensed Site Professional (Mass. No. 7266)

The Commonwealth of Wassachusetts

Executive Office of Public Safety

Department of Fire Services-Office of the State Fire Marshal

P.O. Box 1025, State Road, Stow, M. 01775

permit is granted to:

Date:	4/16/98	_ PERMIT
C. 82 S.4	40 M.G.L.	
In accord	dance with the provi	ons of Chapter 148, M.G.L. as provided in Section 146:38A this
Name:	RILHARD	NANTALS (Full name of person, firm or corporation)

Name: RILLARD NANTALS

(Full name of person, firm or corporation)

For Permission to: ABANSON IN PLACE TWO 1000 GAL UNDERGROUND STORAGE TANK!

State clearly the purpose for which the permit is granted:

TO ENPRY, CLEAN AND FILL WITH CONCRETE SWRRY, TWO - 1000 - 6AL

UNDERGROUND STORAGE TANK! FORMERLY USED FOR GASOLINE,

Restrictions:

Location: 133 MAIN STREET, CARVER TANK! FORMERLY Will Expire On: 4-30-98

Fee Paid:

Signature and Title of Official Granting Permit: FIRE CALVER

SIGNATURE OF THIS PERMIT MUST BE CONSPICUOUSLY POSTED UPON THE PREMISES.)

DEPARTMENT OF ENVIRONMENTAL PROTECTION OF HAZARDOUS MATERIALS One Winter Street

Boston, Massachusetts 02108

1883	re print or type. (Form designed for discovering the	1. Generator US		Ме	nliest	2, Page	1 Information	n the shaded	d areas
ĺ	UNIFORM HAZARDOUS	M P 5 0 8		- Docum	O O 1	1 of 1	la not require	d by Federa	llow.
ŀ	WASTE MANIFEST	MEDIO	0 0 0 3	1101400	<u> </u>		MANUAL DECEM		No. of the last of
- {	3. Generator's Name and Mailing Address					W/V	The Perfect of		
	Richard Nantais	• 02220				371		7	
	P.O. Box 478 Carver, M	A U2330				ļ.			
ŀ	4. Generator's Phone (508) 855-9184		6. 1	US EPA ID Number		. p. 1 . r.		O.	
1	5. Hersporter (Company runni					THE THE	1	- 16 H	
- }	Enviro-Safe Corporation			US EPA ID Number			porter a Phone V		
	7. Transporter 2 Company Name		Ĭ., , ,	1 1 1 1 1	1 1 1				
-	9. Designated Facility Name and Site Address		10.	US EPA ID Number	<u> </u>	Confinally		Server 1	
	Clean Harbors of Braints	ma Wil	10.	000 00000000000000000000000000000000000		7			
		CE PER				Company		अहरता.	नवार ।
	385 Quincy Avenue Braintree, MA 02184		Walte !	N 51 31 41 51 2	16137	ar James	\$ 10 Property 18		3.5
ł	•	<u> </u>		• •	12. Cont	pinera	13.	14.	Terror Sp. 3
	11. US DOT Description (Including Proper Shipp	ing Name, Hezerd	Class, and ID N	lumber)	No.	Туре	Total Quantity	Unit Wt∕Vol	
									5
	Waste Gasoline, 3 UN1203	l. per TT				!			520 V
l l	Marca Gasottina, 2 Outson	, M 11			0,0,1	কি ম/) Katal	Ğ	
	b.				1	1	<u> </u>		
Ģ	5.								
E N					1 1	1 i 1	3 1 A 1		
E	С.		·-····			1-1-1			
Ä	· ·				1	}	\wedge	j	1
O							1 1 1 1		数据等条
R	d.		-		Ţ				100
					1]]		ļ	
							1111		鐵鐵等所
ļ	A PARTICIPATION CONTINUES.	tern vingeligensens	andon)	Cara-son.		100	ding Codes for y	rimen,	
	#ACH045113 ###################################				100				计算数数
							Trade The same		
		A CONTRACTOR OF THE CONTRACTOR				i Hlpunk	CO. TOTAL STORES	Long Laboration of	Life Company
	15. Special Handling Instructions and Addition	Intormation							ļ
1				fully and convenient dat	arihad shows				
	16. GENERATOR'S CERTIFICATION: I hereby declare the proper shipping name and are classified, packed, m	erked, and labeled, and	l are in all respect	is in proper condition for	transport by	highway			
	according to applicable international and national g	overnment regulations	•						
	If I am a large quantity generator, I certify that I have and that I have selected the practicable method of t								
ĺ	ment; OR, if I am a small quantity generator, I have:	made a good faith effo	rt to minimize my	waste generation and s	elect the best	waste mar	agement method th	nt is available :	to me and that I
İ	can afford.								Date
İ	Printed/Typed Name		} ;	Sign ą tur e				Молі	hy Day Year
	17 11 73 9 4	1		19	<i>)</i>		1	1	<u>/ </u>
T	17c Transporter 11 - Acknowledgement of Re	ceipt of Materials	,	1121/11	1 111	1	7		Date
AN SP	Printed/Typed Name		, ;	Signature				Mont 1	th Day Year
	TOHAN	S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>) '</u>	64 - 621					
R T	18: Tremsporter 2 Acknowledgement of Re	ceipt of Materials		/ V					Date
Ė	Printed/Typed Name		1 /	Signatura				Mont	th Day Year
<u> </u>									
F	19. Discrepancy Indication Space								ŕ
A									-
1									
L	20. Facility Owner or Operator: Certification o	freceipt of hazardo	us materials c	overed by this manife	st except a	s noted in	Item 19.	_	
Ť			·	· ·					Date
{ Y	Printed/Typed Name		{	Signature				Moni	th Day Year
	I .		- 1					1 1	1 1 1 1

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

CERTIFICATE OF ANALYSIS

Client: The Paulding Co. Inc

Laboratory Job Number: L9802894

Address: P.O. Box 500

Invoice Number: 14374

18 Pepperell Road

West Groton, MA 01472

Date Received: 16-APR-98

Bart Paulding Attn:

Date Reported: 24-APR-98

Project Number:

Delivery Method: Client

Site: Nantais

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
1,9802894-01	LEFT UST	Carver, MA
L9802894-02	RIGHT UST	Carver, MA
L9802894-03	TRIP BLANK	Carver, MA

Authorized by: James A. Retts

James R. Roth, PhD - Laboratory Manager

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9802894-01

LEFT UST

Sample Matrix:

SOIL

Date Collected: 16-APR-98

Date Received: 16-APR-98

Date Reported : 24-APR-98

Condition of Sample:

Satisfactory

Field Prep: None

Number & Type of Containers: 2 Vial, 2 Glass

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATES PREP ANALYSIS	ID
Solids, Total	82.	%	0.10	3	2540B	23-Apr	ST
Volatile Petroleum Hydrocarbon	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	i sadii ir	128 A	39	Draft 1.0	22-Apr 22-Apr	. NL
C5-C8 Aliphatics	537000	ug/kg	2000				
C9-C12 Aliphatics	1830000	ug/kg	2000				
C9-C10 Aromatics	1010000	ug/kg	2000				
VPH, Total	3380000	ug/kg	2000				
	_						
Benzene	ND	ug/kg	1000				
Toluene	ND	ug/kg	1000				
Ethylbenzene	6590	ug/kg	1000				
p/m-Xylene	86600	ug/kg	1000				
o-Xylene	31700	ug/kg	1000				
Methyl tert butyl ether	ND	ug/kg	1000				
Naphthalene	9150	ug/kg	1000				
SURROGATE RECOVERY							
2,5-Dibromotoluene	93.0	%					

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9802894-02

Date Collected: 16-APR-98 Date Received: 16-APR-98 RIGHT UST

Sample Matrix:

SOIL

Date Reported: 24-APR-98

Condition of Sample: Satisfactory

Field Prep:

None

Number & Type of Containers: 2 Vial, 2 Glass

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATES PREP ANALYSIS	ID
Solids, Total	80.	ę	0.10	3	2540B	23-Apr	ST
Volatile Petroleum Hydrocarbon				39 [:] .	Draft 1.0	21-Apr 21-Apr	NL
C5-C8 Aliphatics	250.	ug/kg	200.				
C9-C12 Aliphatics	338.	ug/kg	200.				
C9-C10 Aromatics	ND	ug/kg	200.				
VPH, Total	588.	ug/kg	200.				
	_						
Benzene	ИD	ug/kg	100.				
Toluene	ND	ug/kg	100.				
Ethylbenzene	ND	ug/kg	100.				
p/m-Xylene	ND	ug/kg	100.				
o-Xylene	ND	ug/kg	100.				
Methyl tert butyl ether	ND	ug/kg	100.				
Naphthalene	ND	ug/kg	100.				
SURROGATE RECOVERY							
2,5-Dibromotoluene	106.	&					

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9802894-03

TRIP BLANK

Sample Matrix:

SOIL

Date Collected: 16-APR-98

Date Received : 16-APR-98

Date Reported: 24-APR-98

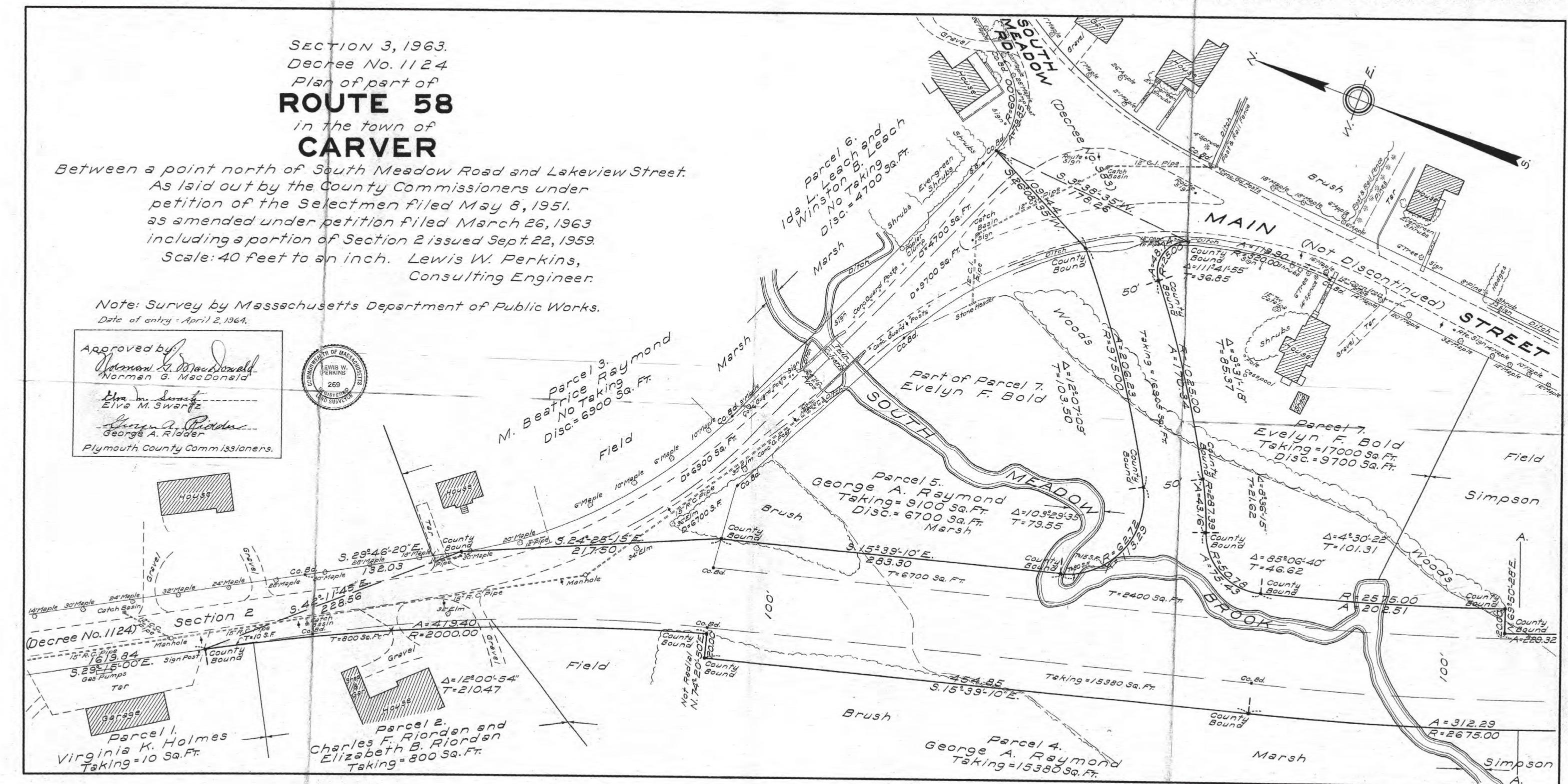
Condition of Sample:

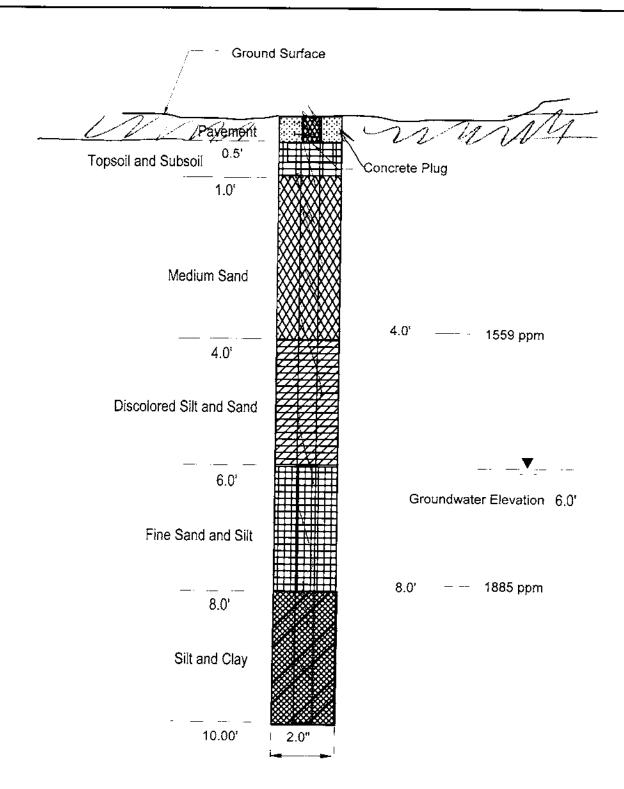
Satisfactory

Field Prep:

None

Number & Type of Containers: 1 Vial

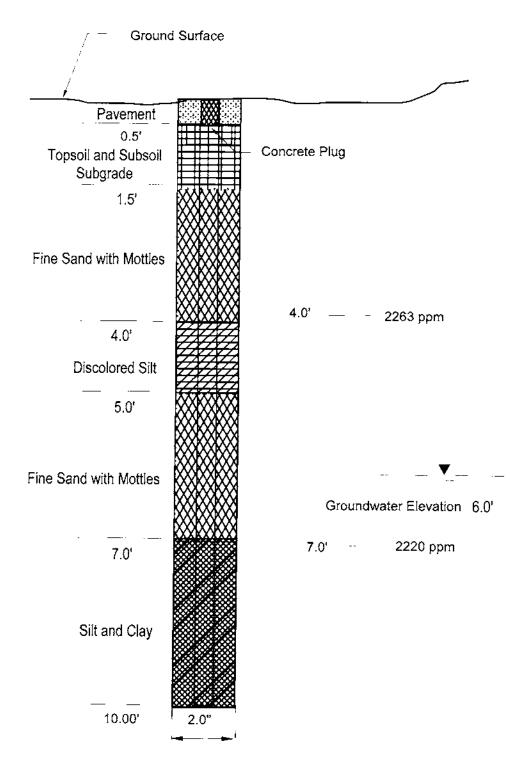

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATES PREP ANALYSIS	ID
Volatile Petroleum Hydrocarb	on		> 179/00011-1288/4 -per 100011-1288/4	. 39	Draft 1.0	21-Apr 21-Apr	NL
C5-C8 Aliphatics	ND	ug/kg	200.				
C9-C12 Aliphatics	ND	ug/kg	200.				
C9-C10 Aromatics	ND	ug/kg	200.				
VPH, Total	ND	ug/kg	200.				
	-						
Benzene	ND	ug/kg	100.				
Toluene	ND	ug/kg	100.				
Ethylbenzene	ND	ug/kg	100.				
p/m-Xylene	ND	ug/kg	100.				
o-Xylene	ND	ug/kg	100.				
Methyl tert butyl ether	ND	ug/kg	100.				
Naphthalene	ND	ug/kg	100.				
SURROGATE RECOVERY							
2,5-Dibromotoluene	110.	8					


17:01

					2 1 2 4 2	A COLINE STATI	CACLE CASOLINE STATION 131 MAIN STREET, CARVER, MASS	TREET, CARV	ER, MASS				
		T		 	SAGLE S	Hadelite SIA							
									-				Ì
GROUNDWATER ANALYSES	YSES												
					+								
		MCP Criteria				ê	80.3	Bp.4	8P-5	8P.6	BP.7	87.9	BP.A
Parameter	GW-1	GW-2	GW-3	loc.	87.7	2.19	2					090	9000
20 00 All-h-4124	400	1000		1	ş	CN	QN	9	11000	71		000	770
CS-CB Allphanes	2007		20000	L	S	QN	QN	Q	24000 ND	2		080	200
C9-C12 Appropries	200			100000	윷	QN	QN	g	3400			*	2
Ca-Ci C Mollanca				ı				 	10000			5	Ş
Renvena		2000	7000	20000	QN	S	Q	2	01 001L		Ţ	2 2	S
	1000		ļ	ı	9	Q	2	2	7,009			2 5	2 2
10luana	1002		L	100000	Q	QN	₽	Q N	1900			200	2 2
Ethyloenzene	2000			1	S	ş	QN	g	11300 ND				ı
Xylene	7000			1	Ş	2	QN	Q.	4700	န္ဓ	۵	67	2300
Methyl tert butyl ether	9(5)			20000	S	2	Q.	QN	370 NO	Ì	Ş	2	2
Naphthalene	7			1									
	-	1											
	orte per Killion	land,								+			
Concentrations and in perity per concentrations	10 to 10 to	1		 - 					1	+			
Bold * Exceeds Green	GW 1 and G	W. 2 critaria											
Sold/Regred at trooping of the line of the state of 1997	COLL COL	uember 17 190	97							+			
Groundwater samples	optained on No	Vermon 17, 18								+			
								+					
							+			+			
SOIL ANALYSES						+				-			
	_	MCP Criteria			40 0 0 0	2A 00 # 6.2A	A RP.9 S.38						
Parameter	S-1/GW-1	S.Z/GW-1	S-3/GW-1	100	6,5,10	1	1						
				0000		07.70	195	32					
C5-C8 Aliphatics	201			1		1850	134	13					
C9-C12 Aliphatics	1000			20007		1720	75	2					
C9-C10 Aromatics	100					MIN							ļ
C9.C18 Aliphatics	1000		2000	20002	2	2	UN VI						
C19-C-36 Aliphatics	2500	[2			9	-	5						
C10-C22 Arometics	200	200			2	2	2						
						CZ III	GN						
Benzene			10	2000		2 2 2	QN E						
Toluena	S)					105	QN 6						}
Ethylbenzene	P			2000		580	46 NO						
Xylene	009	3			CZ	S.	2						
Methyl tert butyl ether				20000		36	GN 6						
Naphthelene		4	4	_[Dr.	2		-				
					1								
				-									
Concentrations in parts per million (ppm)	s per million (p	(md			-								
Bold = Exceeds 5-1 criterion	riterion							1					
Bold/Nafred = Exceeds S-1/GW-1, S-2/GW-1 and S-3/GW-1	ds S-1/GW-1,	S-2/6W-1 and :	S-3/GW-1 criteria										
The EPH targeted compounds were ND for all three soil sample	pounds were	VD for all three	soil samples	-			-		-				
Soil samples obtained on September 25, 1997	on September	25, 1997		-			-						i
		!											

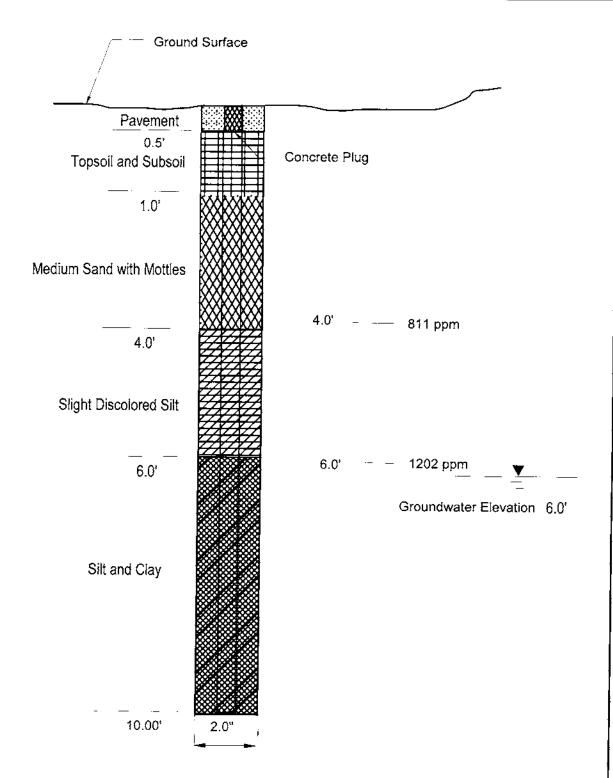
Pege 1

APPENDIX J DISCONTINUANCE PLAN OF MAIN STREET



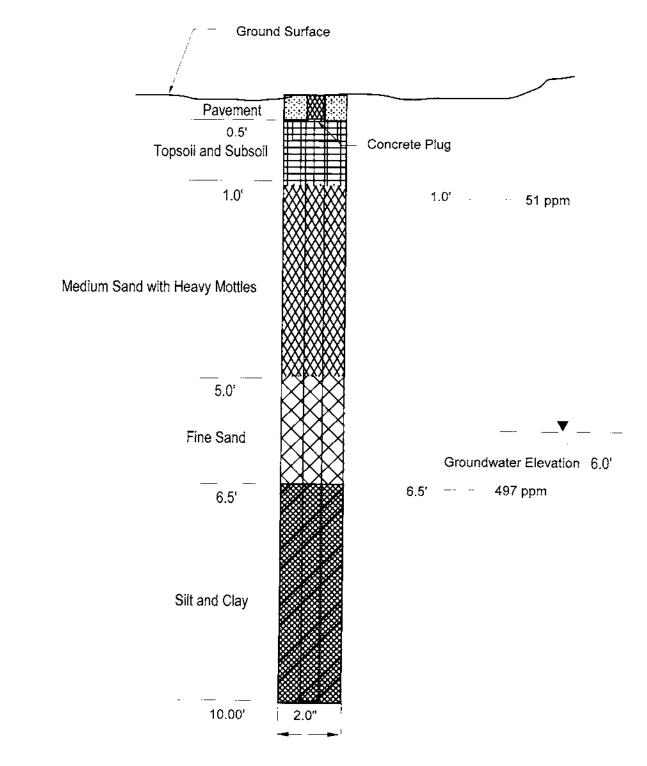
DCA BORING LOG

(NOT TO SOME)

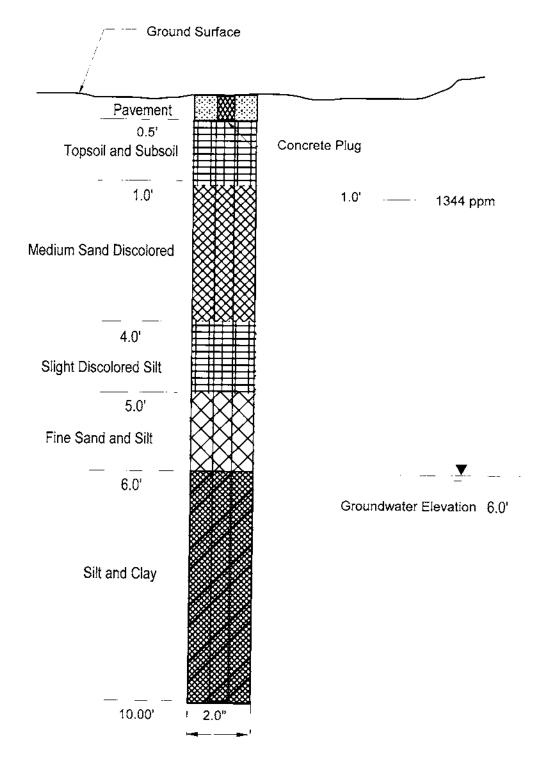

DECOULOS & COMPANY

DCB BORING LOG

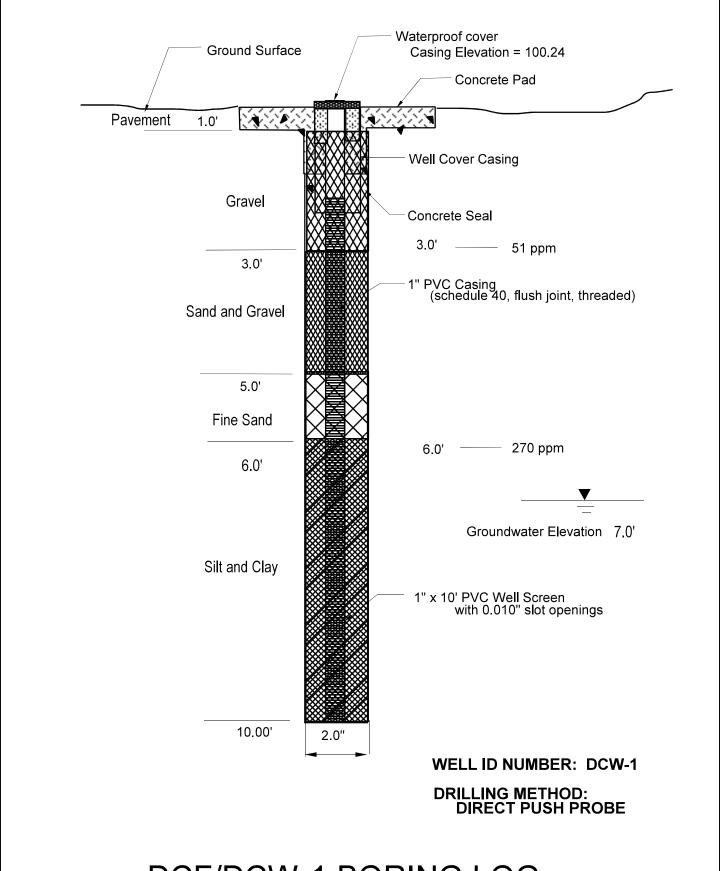
NOTITU SOAE)


DECOULOS & COMPANY

DCC BORING LOG

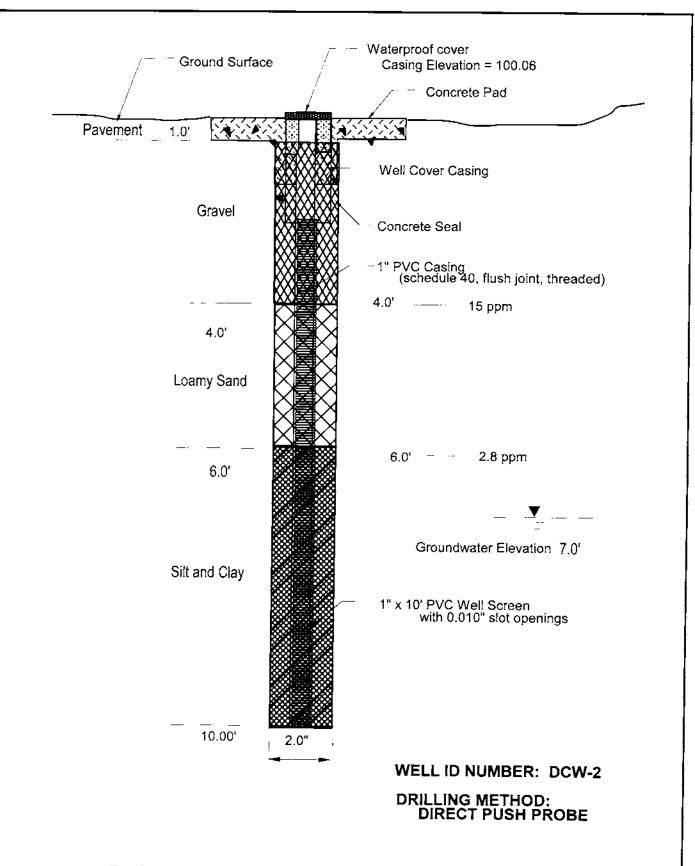

10 SC/G)

DECOULOS & COMPANY


DCD BORING LOG

DECOULOS & COMPANY

DCE BORING LOG


DECOULOS & COMPANY

DCF/DCW-1 BORING LOG


(NOT TO SCALE)

DECOULOS & COMPANY

DCG/DCW-2 BORING LOG

DECOULOS & COMPANY

DCH/DCW-3 BORING LOG

10 Start

DECOULOS & COMPANY

SITE LOCATION: 131 MAIN STREET, CARVER, MA

APPENDIX L LABORATORY CERTIFICATES OF ANALYSIS

GeoLabs, Inc.

Environmental Laboratories

LABORATORY REPORT

PREPARED FOR:

Decoulos & Company 3 Electronics Avenue Danvers, MA 01923

Attn: Jim Decoulos

PROJECT ID:

616

131 Main Street

Carver, MA

GEOLABS CERTIFICATION #:

M-MA015

SAMPLE NUMBER:

134699

DATE PREPARED:

May 27, 2003

PREPARED BY:

Christine Johnson

APPROVED BY:

Jim Chen, Laboratory Director/Date

Location: 45 Johnson Lane

Braintree, MA 02184

Phone: (781) 848-7844

1 of 7

Fax: (781) 848-7811

Exhibit VII A-1 MCP Response Action Analytical Report Certification Form

Analytical Report Certification Form

Laboratory Name: GeoLabs, Inc.	
Laboratory Project #: 134699	
MCP Site Name: 616	· · · · · · · · · · · · · · · · · · ·
MCP RTN #:	
	-
MCP SW-846 8260B () 7470/1 () 8082 () Methods 8270C () 8081A () 7000 ()	VPH () Other: <u>TPH 8100M</u> EPH () Other:
	Zi (i) Subst.
Were all QA/QC procedures required for the specified analytical method(s) included in this report followed?	Yes ⊠ No □ (if No must address in narrative. Attach additional information if required)
Were all QA/QC performance standards for specified analytical method(s) included in this report met (including those not required to be reported)?	Yes ⊠ No □ (if No must address in narrative. Attach additional information if required)
Were all contaminants identified and quantified by the laboratory in the course of this analysis of field samples, by comparison to a calibration standard, even if not a requested analyte, reported by the laboratory to the person that requested the analysis?	Yes * ⊠ No □ (if No must address in narrative, Attach additional information if required) *If Yes , reported in: ⊠ Analytical Report □ Case Narrative
Were all samples received by laboratory in a condition consistent with those described on their Chain-of-Custody documentation?	Yes ⊠ No □ (if No must address in narrative. Attach additional information if required)
 the undersigned, attest under the pains and penalties of penof those responsible for obtaining the information, the material best of my knowledge and belief, accurate and complete. 	rjury that, based upon my personal inquiry al contained in this analytical report is, to the
Signature: Control Chile	Position: Lab Director
Printed Name: Jim Chen	Date: May 27, 2003
· · · · · · · · · · · · · · · · · · ·	·

GeoLabs, Inc.

Environmental Laboratories

CASE NARRATIVE

Project ID: 616 Sample Number: 134699
Client Name: Decoulos & Company Received: 5/23/03

Physical Condition of Samples

This project was received by the laboratory in satisfactory condition. The sample (s) were received undamaged, in appropriate containers with the correct preservation, with the following exceptions.

1. Samples received on ice with temperatures at 10°

Project Documentation

This project was accompanied by satisfactory Chain of Custody documentation. The sample container label(s) agreed with the Chain of Custody.

Analysis of Sample(s)

No analytical anomalies or non-conformances were noted by the laboratory during the processing of these sample(s).

CLIENT NAME:

DECOULOS & COMPANY

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: REC'D BY LAB:

05/21/03 05/23/03

COLLECTED BY: PRESERVATIVE: CLIENT

SULFURIC ACID

PROJECT ID:

REPORT DATE: ANALYZED BY:

05/27/03

131 MAIN STREET

EXTRACTION DATE: 05/23/03

CL 05/27/03

DIGESTION DATE:

N/A

TOTAL PETROLEUM HYDROCARBONS

SAMPLE NUMBER

SAMPLE **LOCATION**

TPH (mg/L) **DETECTION LIMIT** (mg/L)

134699 *

BP-5RR

1060

50.0

ND = NOT DETECTED

* 250x dilution

Method Reference:

EPA Method

8100 (1)

Modified

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1986, 3rd Edition.

TPH WATER QA/QC

	BLANK	MDL	LCS %	% REC.
Gasoline	ND	0.2 mg/L		
Kerosene / Jet Fuel	ND	0.2 mg/L		
Diesel Fuel #2	ND	0.2 mg/L	86.0	40-140%
Fuel #4	ND	0.2 mg/L		
Fuel #6	ND	0.2 mg/L		
Transformer Oil	ND	0.2 mg/L		
Parafin Oil	ND	0.2 mg/L		
Motor Oil	ND	0.2 mg/L		
Surrogate				
OTP % Recovery	97%		100%	40-140%

GEOLABS, INC. 45 JOHNSON LANE BRAINTREE, MA 02184 M-MA015

LIMITATIONS & EXCLUSIONS

All the professional opinions presented in this report are based solely on the scope of work conducted and sources referred to in our report. The data presented by GeoLabs in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations and materials that were observed at the time the work was conducted. No inferences regarding other conditions, locations or materials, at a later or earlier time may be made based on the contents of the report. No other warranty, express or implied is made.

This report was prepared for the sole use of our client. Portions of the report may not be used independent of the entire report.

All analyses were performed within required holding times, in accordance with EPA protocols and using accepted QA/QC procedures. All QA/QC meets acceptable limits unless otherwise noted. The information contained in this report is, to the best of my knowledge, accurate and complete.

Any and all subsequent pages of this report are chain(s) of custody.

GeoLabs, Inc.			בֿן	Turnaround Time	Tpu	ime		/ ened	, 50		
Environmental Laboratories	orles	RUSH:	24hrs			STANDARD:	S	12	CTIONS		
Braintree, MA 02184 Office: 781-848-7844 Fax: 781-848-7811	844 811	i	48hrs 72hrs		A B	Rush Approved by:	NOLO "PLAK ANSA POSSAT	60 "024K NOSA 128	1984 " S		
Client: DECOULOS + C Address: \$ \(\lambda \cdot	5 + W MC 46 MG 01923	Project Number: Project Location	umber: ocation:	6/6 (31)	23	15 N.	THIS SAMPLE BY PURE PRODUCT	THIS SAMPLE TO PUTE PRODUCT	S Aroon	1518	
13 3 21	9659 205 205 200 200 200 200 200 200 200 200	Purchase Order Collected By:	Order #: By:	1 L	5		ENNIC RE	ANALYSES REQUESTED	Rc'd UESTED	3	3
COLLECT D T A T M	SAMPLE	CONTAINER T A U E A A	Σ<- α-×	0054	Ω α ≼ መ ਯ α π ο		0018 Hd1			ЗЯ ОТ АЯЗ ЧМЭТ	-1 € 10 € E
54-5146/21 1900 3)		4	4			66956	X			,0	MIII
CONTAINER CODES: A = Amber B = Bag G = Glass	E 1 1 1 1 1		SERIO HCI HNO, H ₂ SC	7 = 7	copes:	Relinguished By:	5-23 + 03	Received By:	5-23-63	1 170.4	100 g
Plastic Summa Canister Other V = VOA	S = Soil A = Air O = Oil OT = Other	ther 6 5 4	$Na_2S_2O_3$ NaOH MeOH	г		Relinquished By:	Received By: Geol.	Received By: GeoLabs:	GeoLabs:		
		: -				5			<u>י</u>		-

GeoLabs, Inc.

Environmental Laboratories

LABORATORY REPORT

PREPARED FOR:

Decoulos & Company 3 Electronics Avenue Danvers, MA 01923

Attn: Jim Decoulos

PROJECT ID:

616

131 Main Street

Carver, MA

GEOLABS CERTIFICATION #:

M-MA015

SAMPLE NUMBER:

134702 - 134710

DATE PREPARED:

June 4, 2003

1 of 23

PREPARED BY:

Christine Johnson

APPROVED BY:

Jim Chen, Laboratory Director/Date

Location: 45 Johnson Lane

Braintree, MA 02184

Phone: (781) 848-7844

Fax: (781) 848-7811

Exhibit VII A-1 MCP Response Action Analytical Report Certification Form

Analytical Report Certification Form

Laboratory Name: GeoLabs, Inc.	
Laboratory Project #: 134702 - 134710	
MCP Site Name: 616	
MCP RTN #:	
MCP SW-846 8260B (x) 7470/1 () 8082 ()	VPH (x) Other: RCRA-8
Methods 8270C() 8081A() 7000()	EPH(x) Other:
Were all QA/QC procedures required for the specified analytical method(s) included in this report followed?	Yes ⊠ No □ (if No must address in narrative. Attach additional information if required)
Were all QA/QC performance standards for specified analytical method(s) included in this report met (including those not required to be reported)?	Yes □ No ⊠ (if No must address in narrative. Attach additional information if required)
Were all contaminants identified and quantified by the laboratory in the course of this analysis of field samples, by comparison to a calibration standard, even if not a requested analyte, reported by the laboratory to the person that requested the analysis?	Yes * ⊠ No □ (if No must address in narrative. Attach additional information if required) *If Yes , reported in: ☑ Analytical Report □ Case Narrative
Were all samples received by laboratory in a condition consistent with those described on their Chain-of-Custody documentation?	Yes ⊠ No □ (if No must address in narrative. Attach additional information if required)
I, the undersigned, attest under the pains and penalties of pe of those responsible for obtaining the information, the materia best of my knowledge and belief, accurate and complete.	
Signature:	Position: Lab Director
Printed Name: Jim Chen	Date: <u>June 4, 2003</u>
· · · · · · · · · · · · · · · · · · ·	

GeoLabs, Inc.

Environmental Laboratories

CASE NARRATIVE

Project ID:

616

Sample Number:

134702 - 134710

Client Name:

Decoulos & Company

Received:

5/13/03

Physical Condition of Samples

This project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

This project was accompanied by satisfactory Chain of Custody documentation. The sample container label(s) agreed with the Chain of Custody.

Analysis of Sample(s)

The following analytical anomalies or non-conformances were noted by the laboratory during the processing of these sample(s):

1. Not all surrogate recoveries pass on EPH samples, matrix interference confirmed

Matrix								
Containers								
Aqueous Preservative	e □ N/A Le3 pH ≤2							
Temperature	■ Received on ice		ceived at 4° C					
Extraction Method	Water: Separatory Funnel		;	Soil:				
FULL EPH ANALY	TICAL RESULTS							
Method for Ranges:		1						
Method for Target An	alvte: 8270 GC/MS		Client ID:	BP-2	BP-3	-		
Method for PAH Targe			Lab ID:	134702	134703			
EPH Surrogate Stand		Dai	e Collected:	05/21/03	05/21/03			
Aliphatic COD			e Received:	05/23/03	05/23/03			
Aromatic OTP			e Extracted:	05/23/03	05/23/03			
		ions Analyzed:	05/28/03	05/28/03				
EPH Fractionation Su	mogates		gets Analyzed:	05/30/03	05/30/03			
2-Fluorobiphenyl		ition Factor:	1.0	1.0				
2-Bromonaphthalene		l solids (%):	N/A	N/A				
Range/Target Ana	vte	RL	Units					
Unadjusted C11-C22		100	(µg/L)	ND	ND			
•	Naphthalene	1.00	(μg/L)	ND	ND			
Diesel PAH	2-Methylnaphthalene	1.00	(μg/L)	ND	ND			
Analytes	Acenaphthene	1.00	(μg/L)	ND	ND			
•	Phenanthrene	1.00	(μg/L)	ND	ND			
	Acenaphthylene	1.00	(μg/L)	ND	ND			
	Fluorene	1.00	(μg/L)	ND	ND			
	Anthracene	1.00	(μg/L)	ND	ND			
	Fluoranthene	1.00	(μg/L)	ΝĎ	ND			
Other	Pyrene	1.50	(μg/L)	ND	ND	-		
Target PAH	Benz[a]Anthracene	1.00	(μg/L)	ND	ND			
Analytes	Chrysene	1.00	(μg/L)	ND	ND			
	Benzo[b]Fluoranthene	1.00	(μg/L)	ND	ND			
	Benzo[k]Fluoranthene	0.120	(μg/L)	NĎ	ND			
	Benzo[a]Pyrene	0.080	(μg/L)	ND	ND			
	Indeno[1,2,3-c,d]Pyrene	0.240	(μg/L)	ND	ND			
	Dibenzo[a,h]Anthracene	0.500	(μg/L)	ND	ND			
	Benzo[g,h,i]Perylene	1.50	(μg/L)	ND	ND			
C9-C18 Aliphatic Hyd		100	(μg/L)	ND	192			
C19-C36 Aliphatic Hy		100	(μg/L)	ND	ND			
C11-C22 Aromatic Hy		100	(μ g/L)	ND	ND			
Aliphatic Surrogate				89%	82%			
Aromatic Surrogate				102%	97%			
Sample Surrogate A				40-140%	40-140%			
2,2'-Difluorobipheny				54%	55%			
2-Fluorobiphenyl %				49%	51%			
ractionation Surrog	jate Acceptance Range			40-140%	40-140%			
	a exclude concentrations of any surr			ards eluting in t	that range			
C ₁₁₋ C ₂₂ Aromatic Hydroc	carbons exclude concentrations of Ti	arget PAH Ana	ly tes.					
ERTIFICATION								

	the EPH Method followed? ☑ Yes ☐ No - Details attached
	s acheived? ☑ Yes □ No - Details attached
Were any significant modifications made to	the EPH method?? ☑ No ☐ Yes - Details attached
I attest under the pains and penalties of per responsible for obtaining the information, the belief, accurate and complete.	rjury that, based upon my inquiry of those individuals immediately e material contained in this report is, to the best of my knowledge and
SIGNATURE:	POSITION: Lab Director
PRINTED NAME: Jim Chen	DATE: 6/4/03

SAMPLE INFORMATION

Matrix	☑ Aqueous ☐ Soil ☐ Sediment ☐ Other
Containers	☑ Satisfactory □ Broken □ Leaking
Aqueous Preservative	☐ N/A ២ pH ≤2 ☐ pH > 2 Comment:
Temperature	☑ Received on ice ☐ Received at 4°C ☐ Other
Extraction Method	Water: Separatory Funnel Soil:

FULL EPH ANALY		ı				
Method for Ranges:				- 	1 BB'B7	
Method for Target An			Client ID:	DC-A1	DC-B1	
Method for PAH Targ			Lab ID:	134704	134705	
EPH Surrogate Standards:			e Collected:	05/21/03	05/21/03	
Aliphatic COD			e Received:	05/23/03	05/23/03	
Aromatic OTP			e Extracted:	05/23/03	05/23/03	
			ions Analyzed:	05/28/03	05/28/03	
EPH Fractionation Su	иrrogates		gets Analyzed:	05/30/03	05/30/03	
2-Fluorobiphenyl [ition Factor:		Dilution	
2-Bromonaphthalene		ıl solids (%):	N/A	N/A		
Range/Target Ana	/Target Analyte RL Units			Dilution		
Unadjusted C11-C		100 1. 0 0	(μg/L)	456000	863000	125
	Naphthalene		(μg/L)	113	110	1
Diesel PAH	2-Methylnaphthalene	25.0	(μg/L)	4597	4524	25
Analytes	Acenaphthene	1.00	(μg/L)	51.5	40.9	1
	Phenanthrene	1.00	(μg/L)	73.9	ND	1
	Acenaphthylene	1.00	(μg/L)	13.1	10.3	1
	Fluorene	1.00	(μg/L)	182	180	1
	Anthracene	1.00	(μg/L)	308	260	1
	Fluoranthene	1.00	(μg/L)	9.91	8.12	1
Other	Pyrene	1.50	(μg/L)	58.4	63.4	1
Target PAH	Benz[a]Anthracene	1.00	(μg/L)	ÑD	ND	1
Analytes Chrysene		1.00	(μg/L)	2.22	2.76	1
	Benzo[b]Fluoranthene	1.00	(μg/L)	ND	ND	1
	Benzo[k]Fluoranthene	0.120	(μg/L)	0.636	0.742	1
	Benzo[a]Pyrene	0.080	(μg/L)	0.431	0.474	1
	Indeno[1,2,3-c,d]Pyrene	0.240	(μg/L)	ND	0.247	1
	Dibenzo[a,h]Anthracene	0.500	(µg/L)	ND	ND	1
	Benzo[g,h,i]Perylene	1.50	(µg/L)	ND	ND	1
C9-C18 Aliphatic Hy	drocarbons '	125000	(μg/L)	2040000	2040000	1250
C19-C36 Aliphatic H	ydrocarbons '	50000	(μg/L)	732000	696000	500
C11-C22 Aromatic H	lydrocarbons 1,2	12500	(μg/L)	451000	858000	125
Aliphatic Surrogate	% Recovery (COD)		1 7	961%*	1420%	
Aromatic Surrogate	% Recovery (OTP)		1	793%*	884%*	
Sample Surrogate			†	40-140%	40-140%	
2,2'-Difluorobipheny				74%	67%	
2-Fluorobiphenyl %			1	47%	40%	
	gate Acceptance Range	:	 	40-140%	40-140%	
Hydrocarbon Range dat	ta exclude concentrations of any surr	ropate(s) and/o	r internal stands	rde elutina in t	that range	

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ²C₁₁.C₂₂ Aromatic Hydrocarbons exclude concentrations of Target PAH Analytes.

CERTIFICATION	* Matrix interference confirmed by re-run	
	QUIRED by the EPH Method followed? 🗵 Yes 🔲 No - Details attached	d
Were all performance/acceptance	e standards acheived? Yes No - Details attached See * above	
Were any significant modifications	ns made to the EPH method?? No Yes - Details attached	
responsible for obtaining the infor- belief, accurate and complete.	alties of perjury that, based upon my inquiry of those individuals immediate primation, the material contained in this report is, to the best of my knowledge.	
SIGNATURE:	POSITION: Lab Directo	r
PRINTED NAME: Jim Ch		

SAMPLE INFORMATION

SWINILTE IMPOUNDED	
Matrix	☑ Aqueous ☐ Soil ☐ Sediment ☐ Other
Containers	■ Satisfactory □ Broken □ Leaking
Aqueous Preservative	☐ N/A 图 pH ≤ 2 ☐ pH > 2 Comment:
Temperature	☑ Received on ice ☐ Received at 4° C ☐ Other
Extraction Method	Water: Separatory Funnel Soil:

FIIII	FPH	ΔΝΔΙ Υ	TICAL	RESULTS
I VLL		~~~		1/200210

FULL EPH ANALYTIC						
Method for Ranges: MA						
Method for Target Analy		Client ID:				
Method for PAH Targets			Lab ID:	134706		
EPH Surrogate Standard	ds:		e Collected:			
Aliphatic COD		Date	e Received:	05/23/03		
Aromatic OTP		Date	e Extracted:	05/23/03		
		Date Fract	ions Analyzed:	05/28/03		
EPH Fractionation Surro	gates		gets Analyzed:	05/30/03		
2-Fluorobiphenyl	[ition Factor:			
2-Bromonaphthalene		Tota	solids (%):	N/A		
Range/Target Analyt	e	RL.	Units		Dilution	
Unadjusted C11-C22	Aromatics'	100	(μg/L)	794000	125	
	Naphthalene	1.00	(μ g/L)	117	1	
Diesel PAH	2-Methylnaphthalene	25.0	(μg/L)	4854	25	
Analytes	Acenaphthene	1.00	(μg/L)	31.8	1	
	Phenanthrene	1.00	(μg/L)	ND	7	
	Acenaphthylene	1.00	(μg/L)	9.00	1	
	Fluorene	1.00	(μg/L)	150	1	
	Anthracene	1.00	(μg/L)	281	1	
	Fluoranthene	1.00	(μg/L)	10.0	1	
Other	Pyrene	1.50	(μg/L)	70.9	1	
Target PAH	Benz[a]Anthracene	1.00	(μg/L)	ND	1	
Analytes	Chrysene	1.00	(μg/L)	2.86	1	
	Benzo[b]Fluoranthene	1.00	(μg/L)	ND	1	
	Benzo[k]Fluoranthene	0.120	(μg/L)	0.265	1	
	Benzo[a]Pyrene	0.080	(μg/L)	0.571	1	
	Indeno[1,2,3-c,d]Pyrene	0.240	(μg/L)	0.367	1	
	Dibenzo[a,h]Anthracene	0.500	(μg/L)	ND	1	
	Benzo[g,h,i]Perylene	1.50	(μg/L)	ND	1	
C9-C18 Aliphatic Hydrocarbons		125000	(μg/L)	2150000	1250	
C19-C36 Aliphatic Hydrocarbons'		50000	(μg/L)	721000	500	
C11-C22 Aromatic Hyd	12500	(μg/L)	788000	125		
Aliphatic Surrogate % Recovery (COD)				953%		
Aromatic Surrogate % Recovery (OTP)				1220%*		
Sample Surrogate Ac			40-140%			
2,2'-Difluorobiphenyl 9			73%		-	
2-Fluorobiphenyl % R			40%			
Fractionation Surroga	te Acceptance Range			40-140%		

'Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ${}^2C_{11}$ - C_{22} Aromatic Hydrocarbons exclude concentrations of Target PAH Analytes.

CERTIFICATION	* Matrix interference confirmed by re-run
	QUIRED by the EPH Method followed? Yes No - Details attached
	ce standards acheived? Yes No - Details attached See * above
Were any significant modification	ons made to the EPH method?? 🗷 No 🖸 Yes - Details attached
	nalties of perjury that, based upon my inquiry of those individuals immediately formation, the material contained in this report is, to the best of my knowledge and
SIGNATURE:	POSITION: Lab Director
PRINTED NAME: Jim	Chen DATE: 6/4/03

SAMPLE INFORMATION

O, == O	
Matrix	✓ Aqueous ☐ Soil ☐ Sediment ☐ Other
Containers	I ☑ Satisfactory ☐ Broken ☐ Leaking
Aqueous Preservative	□ N/A 図 pH ≤ 2 □ pH > 2 Comment:
Temperature	☑ Received on ice ☐ Received at 4° C ☐ Other
Extraction Method	Water: Separatory Funnel Soil:

FULL EPH ANALYTICAL RESULTS

FULL EPH ANALY ()						
Method for Ranges: MA	ADEP EPH 98-1					
Method for Target Analy		Client ID:	DC-D1	DC-E1	DC-F1	
Method for PAH Targets	s: GC/MS		Lab ID:	134707	134708	134709
EPH Surrogate Standar	ds:		e Collected:	05/21/03	05/21/03	05/21/03
Aliphatic COD		Dat	e Received:	05/23/03	05/23/03	05/23/03
Aromatic OTP		Dat	e Extracted:	05/23/03	05/23/03	05/23/03
]		Date Fract	ions Analyzed:	05/28/03	05/28/03	05/28/03
EPH Fractionation Surre	ogates		gets Analyzed:	05/30/03	05/30/03	05/30/03
2-Fluorobiphenyl			ition Factor:	1.0	1.0	1.0
2-Bromonaphthalene			l solids (%):	N/A	N/A	N/A
Range/Target Analys	te	RL	Units			
Unadjusted C11-C22	Aromatics'	100	(μg/L)	ND	112	ND
	Naphthalene	1.00	(μg/L)	ND	ND	ND
Diesel PAH	2-Methylnaphthalene	1.00	(μg/L)	ND	ND	ND
Analytes	Acenaphthene	1.00	(μg/L)	ND	ND	ND
	Phenanthrene	1.00	(μg/L)	ND	ND	ND
	Acenaphthylene	1.00	(μg/L)	ND	ND	ND
	Fluorene	1.00	(μg/L)	ND	ND	ND
	Anthracene	1.00	(μg/L)	ND	ND	ND
	Fluoranthene	1.00	(μg/L)	ND	ND	ND
Other	Pyrene	1.50	(μg/L)	ND	ND	ND
Target PAH	Benz[a]Anthracene	1.00	(μg/L)	ND	ND	ND
Analytes	Chrysene	1.00	(μg/L)	ND	ND	ND
	Benzo[b]Fluoranthene	1.00	(μg/L)	ND	ND	ND
	Benzo[k]Fluoranthene	0.120	(μg/L)	ND	ND	ND
	Benzo[a]Pyrene	0.080	(μg/L)	ND	ND	ND
	Indeno[1,2,3-c,d]Pyrene	0.240	(μg/L)	ND	ND	ND
	Dibenzo[a,h]Anthracene	0.500	(μg/L)	ND	ND	ND
{	Benzo[g,h,i]Perylene	1.50	(μg/L)	ND	ND	ND
C9-C18 Aliphatic Hydr	ocarbons '	100	(μg/L)	188	266	ND
C19-C36 Aliphatic Hydrocarbons		100	(μg/L)	ND	ND	ND
C11-C22 Aromatic Hydrocarbons ^{1,2}		100	(μg/L)	ND	112	ND
Aliphatic Surrogate % Recovery (COD)				> 68%	80%	65%
Aromatic Surrogate % Recovery (OTP)				79%	101%	90%
Sample Surrogate Acceptance Range				40-140%	40-140%	40-140%
2,2'-Difluorobiphenyl % Recovery				26%*	51%	49%
2-Fluorobiphenyl % Recovery				22%	49%	43%
Fractionation Surroga	te Acceptance Range			40-140%	40-140%	40-140%

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ${}^2C_{11}$. C_{22} Aromatic Hydrocarbons exclude concentrations of Target PAH Analytes.

CERTIFICATION * N	fatrix interference confirmed by re-run
Were all QA/QC procedures REQUIRED by	y the EPH Method followed? 図 Yes □ No - Details attached
Were all performance/acceptance standard	Is acheived? Yes No - Details attached See * above
Were any significant modifications made to	the EPH method?? ■ No □ Yes - Details attached
	rjury that, based upon my inquiry of those individuals immediately ne material contained in this report is, to the best of my knowledge and
SIGNATURE:	POSITION: Lab Director
PRINTED NAME: Jim Chen	DATE: 6/4/03

SAMPLE INFORMATION

Matrix	☑ Aqueous □ Soil □ Sediment □ Other
Containers	
Aqueous Preservative	☐ N/A 图 pH ≤2 ☐ pH > 2 Comment:
Temperature	■ Received on ice □ Received at 4°C □ Other
Extraction Method	Water: Separatory Funnel Soil:
·	· · · · · · · · · · · · · · · · · · ·

FULL	EPH	ANALY	TICAL	RESULTS
------	-----	-------	-------	---------

FULL EPH ANALYT						
Method for Ranges: M						
Method for Target Analyte: 8270 GC/MS			Client ID:	DCMWA		
	Method for PAH Targets: GC/MS		Lab ID:	134710		
EPH Surrogate Standa	rds:		e Collected:	05/21/03		
Aliphatic COD		Dat	e Received:	05/23/03		
Aromatic OTP		Dat	e Extracted:	05/23/03		
		Date Fract	ions Analyzed:	05/28/03		
EPH Fractionation Sur	rogates		gets Analyzed:	05/30/03		
2-Fluorobiphenyl			ition Factor:	1.0		
2-Bromonaphthalene		Tota	l solids (%):	N/A		
Range/Target Analy	rte .	RL.	Units			
Unadjusted C11-C22	Aromatics'	100	(μg/L)	МĎ		
	Naphthalene	1.00	(μg/L)	8.21		
Diesel PAH	2-Methylnaphthalene	1.00	(μg/L)	1.30		
Analytes	Acenaphthene	1.00	(μg/L)	ND		
	Phenanthrene	1.00	(μg/L)	ND		
	Acenaphthylene	1.00	(μg/L)	ND	İ	
	Fluorene	1.00	(μg/L)	ND		
	Anthracene	1.00	(μg/L)	ND		
}	Fluoranthene	1.00	(μg/L)	ND		
Other	Pyrene	1.50	(μg/L)	NÐ		
Target PAH	Benz[a]Anthracene	1.00	(μg/L)	ND		
Analytes	Chrysene	1.00	(μg/L)	ND		
	Benzo[b]Fluoranthene	1.00	(μg/L)	ND		
	Benzo[k]Fluoranthene	0.120	(μg/L)	ND		
	Benzo[a]Pyrene	0.080	(μ g/L)	ND		
	Indeno[1,2,3-c,d]Pyrene	0.240	(μg/L)	ND		
	Dibenzo[a,h]Anthracene	0.500	(μ g/L)	ND		
	Benzo[g,h,i]Perylene	1.50	(μ g/L)	ND		
C9-C18 Aliphatic Hydro		100	(μ g/L)	ND		
C19-C36 Aliphatic Hyd		100	(μg/L)	ND		
C11-C22 Aromatic Hydrocarbons 1.2		100	(µg/L)	ND		
Aliphatic Surrogate % Recovery (COD)				86%		
Aromatic Surrogate % Recovery (OTP)				97%		
Sample Surrogate Acceptance Range				40-140%		
2,2'-Difluorobiphenyl % Recovery				53%		
2-Fluorobiphenyl % F	Recovery			49%		
	ate Acceptance Range			40-140%		
Hydrocarbon Range data	exclude concentrations of any sur	rogate(s) and/o	r internal standa	ards eluting in the	it range	

Processing Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ${}^2C_{11}$. C_{22} Aromatic Hydrocarbons exclude concentrations of Target PAH Analytes.

CERTIFICATION

Were all QA/QC procedures REQUIRED by the EPH Meth Were all performance/acceptance standards acheived? ☑ Were any significant modifications made to the EPH method	Yes ☐ No - Details attached
I attest under the pains and penalties of perjury that, based responsible for obtaining the information, the material cont belief, accurate and complete.	
SIGNATURE:	POSITION: Lab Director
PRINTED NAME: Jim Chen	DATE: 6/4/03

EPH - QC - Ranges EXTRACTABLE PETROLEUM HYDROCARBONS

QC RESULTS

	Method Blank	MDL (μg/L)	Spike % Recovery 1	Spike % Recovery 2		RPD	%
*c9-c18 Aliphatics	25.8	100	66.0		40-140	4.33	≤ 50
c19-c36 Aliphatics	22.7	100	95.9	104	40-140	7,08	≤ 50
c11-c22 Aromatics	42.5	100	79,4°	71.7 ×	40-140	8.35	≤ 50

Surrogate % Recovery:

COD	82%	40-140	72% 95%	40-140	27.4%	≤ 50
OTP	100%	40-140	96% 99%	40-140	3.10%	≤ 50

EPH - QC Target Analyte EXTRACTABLE PETROLEUM HYDROCARBONS

QC RESULTS

	Method	Spike %	Limits
	Blank	Recovery 1	%
Naphthalene	ND	47%	40-140%
Acenapthalene	ND	66%	40-140%
Anthracene	ND	74%	40-140%
Pyrene	ND	83%	40-140%
Chrysene	ND	94%	40-140%

SAMPLE INFORMATION

PRINTED NAME: J/m'Chen

Matrix	☑ Aqueous ☐ Soil ☐ Sediment ☐ Other								
Containers	⊠ S	Satisfactory		☐ Leaking					
	Aqueous	<u> </u>		pH > 2 Com					
Sample	Soil or				in MeOH or ai		ners	ml MeOH	
Preservatives	Sediment		s received in		Covering soil	? □ Not		□1:1 <u>+</u> 25%	
	——————————————————————————————————————		ed in air tight o					☐ Other	
Temperature		Received on ic	<u>;e ∐ K€</u>	eceived at 4° +			T	1 - 2 - 1	
1	YTICAL RE				Client ID:	BP-2	BP-3	DC-D1	
Method for R	•				Lab ID:	134702	134703	134707	
		s: MADEP VI	PH		e Collected:	05/21/03	05/21/03	05/21/03	
-	ite Standards				e Received:	05/23/03	05/23/03	05/23/03	
	•	bromotoluen	•	Dat	te Analyzed:	05/29/03	05/29/03	05/29/03	
	FID (2,5-Dil	bromotolu e n	:e)		ution Factor:	1.0	1.0	1.0	
				Tota	ıl solids (%):	N/A	N/A	N/A	
Range/Targ	et Analyte		Elut. Range	RL	Units				
Unadjusted	l C5-C8 Alip	hatics ¹	N/A	40	ug/L	ND	ND	108	
Unadjusted	C9-C12 Alip	natics ¹	N/A	15	ug/L	ND	ND	ND	
Methyl tert-	-butyl ether		C ₅ -C ₈ Aliph.	5	ug/L	ND	ND	192	
Benzene			C ₅ -C ₈ Aliph.	5	ug/L	ND	ND	5.20	
Toluene			C ₅ -C ₈ Aliph.	5	ug/L	ND	ND	ND	
Ethylbenzen	ie		C ₉ -C ₁₂ Aliph.	5	ug/L	ND	ND	ND	
m&p-Xylene	S		C ₉ -C ₁₂ Aliph.	5	ug/L	ND	ND	ND	
o-Xylene		C ₉ -C ₁₂ Aliph.	5	ug/L	ND	ND	ND		
Naphthalene			N/A	20	ug/L	ND	ND	ND	
C5-C8 Alipha			N/A	40	ug/L	ND	ND	ND	
C9-C12 Aliph			N/A	15	ug/L	ND	ND	ND	
C9-C10 Aron	natic Hydroc	carbons'	C ₉ -C ₁₂ Aliph.	55	ug/L	ND	ND ·	ND	
2,5-Dibromo	otoluene (PII	D) Surrogate	Recovery			91%	98%	92%	
2,5-Dibromo	toluene (FII)	Surrogate	Recovery			72%	76%	₹ ₃79%	
Surrogate A						70-130%	70-130%	70-130%	
					r internal standa		hat range		
² C ₅ -C ₈ Aliphatic	: Hydrocarbons	exclude the co	oncentration of 7	Farget Analytes	s eluting in that r	rang e			
°C ₉ -C ₁₂ Aliphati	c Hydrocarbon	s exclude conc	of Target Analy	tes eluting in th	at range AND o	oncentration of	fC ₉ -C ₁₀ Aromati	ic Hydrocarbon	
CERTIFICA	TION								
		····os BEOLII	DED bytho	VDU Mothod	followed?		N- D-4-0	11151"	
Were all OA	/QC process /OC perform	nauce jaccer nauce jaccer	ntance stand	VED MEUTOU Iorde achieve	ed? 🗵 Ye	⊠ tes ⊔ ∘ ⊓No'	NO - Detain Dotoile offoo	s attacheu	
					as specified				
110.0 0, 0	30mount mo	dirodnono n.	lade to the .	F EL HIGHIOU,	, as specifica	in occiti	3.: E 140	1	
l attest unde	l attest under the pains and penalties of perjury that, based upon my inquiry of those individuals								
immedately i	nmedately responsible for obtaining the information, the material contained in this report is, to								
the best of m						vu	, , , , , , , , , , , , , , , , , , ,		
		:		<i>s</i> .					
SIC	GNATURE:	·	: 	Y "	ı	POSITION:	Lab Director	•	

DATE: 06/04/03

SAMPLE INFORMATION									
Matrix	Matrix ☑ Aqueous ☐ Soil ☐ Sediment ☐ Other								
Containers	s 🗵 Satisfactory 🗆 Broken 🗅 Leaking								
	Aqueous			pH > 2 Com					
Sample	Soil or		☐ Samples NOT preserved in MeOH or air-tight containers						
Preservatives	Sediment		s received in N		Covering soil	? 🗆 Not	·	□1:1 <u>+</u> 25%	
			d in air tight c					☐ Other	
Temperature									
VPH ANAL'	YTICAL RE	SULTS	ļ		Client ID:	DC-E1	DC-F1		
Method for R	langes: MAD	EP VPH			Lab ID:	134708	134709		
Method for T	arget Analyte	s: MADEP VE	PH	Date	e Collected:	05/21/03	05/21/03		
VPH Surroga	ate Standards	;		Date	e Received:	05/23/03	05/23/03		
	PID (2,5-Di	bromotoluen	e)	Dat	e Analyzed:	05/29/03	05/29/03		
	FID (2,5-Dil	bromotoluene	e)	Dilu	tion Factor:	1.0	1.0		
	•		· [Tota	solids (%):	N/A	N/A		
Range/Targ	et Analyte		Elut. Range	RL	Units				
Unadjusted		atics1	N/A	40	ug/L	ДN	ND		
Unadjusted		,	N/A	15	ug/L	ND _	ND		
Methyl tert-t	butyl ether		C ₅ -C ₈ Aliph.	5	ug/L	ND	ND		
Benzene			C ₅ -C ₈ Aliph.	5	ug/L	ND	ND		
Toluene			C ₅ -C ₈ Aliph.	5	ug/L	ND	ND		
Ethylbenzer	ne		C ₉ -C ₁₂ Aliph.	5	ug/L	ND	ND		
m&p-Xylene			C ₉ -C ₁₂ Aliph.	5	ug/L	ND	ND		
o-Xylene			C ₉ -C ₁₂ Aliph.	5	ug/L	ND	ND		
Naphthalen	е		N/A	20	ug/L	ND	ND		
C5-C8 Aliph		arbons ^{1,2}	N/A	40	ug/L	ND	ND		
C9-C12 Alip	hatic Hydroc	earbons ^{1,3}	N/A	15	ug/L	ND	ND		
C9-C10 Aror	matic Hydror	carbons'	C ₉ -C ₁₂ Aliph.	55	ug/L	ND	ND		
2,5-Dibromo	otoluene (Pl	D) Surrogate	Recovery			93%	96%		
2,5-Dibromo	otoluene (FII	D) Surrogate	Recovery			73%	76%		
Surrogate A	cceptance F	Range				70-130%	70-130%		
¹ Hydrocarbon l	Range data exc	clude concentra	tions of any sur	тоgate(s) and/o	r internal stand	ards eluting in t	that range		
		s exclude the co							
3C ₉ -C ₁₂ Aliphat	ric Hydrocarbon	is exclude conc	of Target Analy	tes eluting in th	at range AND o	concentration of	C ₉ -C ₁₀ Aromat	ic Hydrocarbon	
CERTIFICATION									
Were all QA/QC procedures REQUIRED by the VPH Method followed? ☒ Yes ☐ No - Details attached									
Were all QA/QC performance /acceptance standards achieved? ⊠ Yes □ No - Details attached									

	PH Method followed? ⊠ Yes □ No - Details attached							
Were all QA/QC performance /acceptance standal	rds achieved? 🗵 Yes 🛚 No - Details attached							
Were any significant modifications made to the VPH method, as specified in Sect 11.3.? ☒ No								
I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immedately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge, accurate and complete.								
SIGNATURE:	POSITION: Lab Director							
PRINTED NAME: Jim Chen	DATE: 06/04/03							

SAMPLE INFORMATION

Matrix	Matrix ☑ Aqueous ☐ Soil ☐ Sediment ☐ Other								
Containers	S S	atisfactory	☐ Broken	□ Leaking					
	Aqueous	□ N/A B	⊠ pH≤2 □	pH > 2 Com	ment:				
Sample	Soil or	□ N/A □	I Samples NO	Samples NOT preserved in MeOH or air-tight containers ml MeOH					
Preservatives	Sediment	☐ Sample	s received in I	MeOH □	Covering soil	? 🗆 Not		□1:1 <u>±</u> 25%	
			ed in air tight o					☐ Other	
Temperature	⊠ R	eceived on ic	e □ Re	eceived at 4°	C ☐ Other				
VPH ANALYTICAL RESULTS Client ID: DCMWA									
Method for R	anges: MADI	EP VPH			Lab ID:	134710			
Method for Ta	arget Analytes	s: MADEP V	PH	Dat	e Collected:	05/21/03			
VPH Surroga	ite Standards			Dat	e Received:	05/23/03			
	PID (2,5-Dit	promotoluen	e)	Dat	e Analyzed:	05/29/03			
•	FID (2,5-Dib	promotoluen	e)	Dilı	ition Factor:	1.0 / 5.0*			
				Tota	l solids (%):	N/A			
Range/Targ	et Analyte		Elut. Range	RL	Units				
Unadjusted	C5-C8 Alip	hatics ¹	N/A	40	ug/L	571			
Unadjusted	l C9-C12 Alip	ohatics ¹	N/A	15	ug/L	287			
Methyl tert-	butyl ether		C ₅ -C ₈ Aliph.	25*	ug/L	992			
Benzene			C ₅ -C ₈ Aliph.	5	ug/L	40.4			
Toluene			C ₅ -C ₈ Aliph.	5	ug/L	22.0			
Ethylbenze	ne		C ₉ -C ₁₂ Aliph.	5	ug/L	202			
m&p-Xylen	es		C ₉ -C ₁₂ Aliph.	5	ug/L	454			
o-Xylene			C ₉ -C ₁₂ Aliph.	5	ug/L	143			
Naphthalen	e		N/A	20	ug/L	25.2			
	atic Hydroca		N/A	40	ug/L	ND			
C9-C12 Aliph	natic Hydroca	arbons ^{1,3}	N/A	15	ug/L	ND .			
C9-C10 Aror	natic Hydro	carbons'	C ₉ -C ₁₂ Aliph.	55	ug/L	961			
2,5-Dibromo	toluene (PID) Surrogate	Recovery			100%			
2,5-Dibromo			Recovery			83%			
Surrogate A						70-130%			
¹ Hydrocarbon F							hat range		
² C ₅ -C ₈ Aliphatic	Hydrocarbons	exclude the co	ncentration of T	Farget Analytes	eluting in that	range			
C ₉ -C ₁₂ Aliphati	c Hydrocarbons	exclude conc	of Larget Analy	tes eluting in th	at range AND o	oncentration of	C ₉ -C ₁₀ Aromati	c Hydrocarbon:	
CERTIFICA'	TION								
Were all QA		Ires REOLII	RED hytha \	/DH Method	followed2 I	71 Van 17	No Details	attached	
Were all QA									
Were any sig								160	
	g	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			do opoomice	000. 1	o 🖭 110		
								ŀ	
l attest unde	r the pains a	and penalties	s of periury ti	hat, based u	pon my inau.	irv of those i	individuals		
	attest under the pains and penalties of perjury that, based upon my inquiry of those individuals mmedately responsible for obtaining the information, the material contained in this report is, to								
the best of n							,		
Sic	GNATURE:_				į	POSITION:	Lab Director		
PRINTED NAME: Jfm Chen				•	DATE:	06/04/03			

Matrix:	Water	μ g/ L	LCS %	Limit	BLANK
MTBE			96%	70-130%	ND
Benzene			88%	70-130%	ND
Toluene			108%	70-130%	ND
Ethyl Benzene			97%	70-130%	ND
m,p-xylene			122%	70-130%	ND
o-xylene			106%	70-130%	ND
Naphthalene		104%	70-130%	ND	
Surrogate	Recoveries	:			
2,5-Dibromotoluene (PID)			97%		
2,5-Dibromotoluene (FiD)			88%		

CLIENT NAME: SAMPLE TYPE: **DECOULOS & COMPANY**

GROUNDWATER

COLLECTION DATE: 05/21/03 REC'D BY LAB:

05/23/03

COLLECTED BY:

CLIENT

PRESERVATIVE: HYDROCHLORIC ACID PROJECT ID:

131 MAIN STREET

REPORT DATE: ANALYZED BY:

06/04/03

EXTRACTION DATE: N/A

ZYZ 05/25/03

DIGESTION DATE:

N/A

1,2-DIBROMOETHANE

SAMPLE	SAMPLE	RESULTS	DETECTION LIMIT (μg/L)
NUMBER	LOCATION	(μg/L)	
	•	·	

134703

BP-3

NĐ

0.650

134710

DCMWA

ND

0.650

ND = NOT DETECTED

CALCULATIONS BASED ON DRY WEIGHT

Method Reference:

EPA Method

8260B (1) GC/MS

5035 Collection Method

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1997, 3rd Edition.

CLIENT NAME:

DECOULOS & COMPANY

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: 05/21/03

REC'D BY LAB: COLLECTED BY: 05/23/03 CLIENT

PRESERVATIVE:

HYDROCHLORIC ACID

PROJECT ID:

REPORT DATE: ANALYZED BY:

131 MAIN STREET

06/04/03

ZYZ 05/26/03

EXTRACTION DATE: N/A

DIGESTION DATE:

N/A

VOLATILE ORGANICS

SAMPLE NUMBER: SAMPLE LOCATION: 134707

DC-D1

Acetone ND 50.0 Acrylonitrile ND 50.0 Benzene 5.37 5.0 Bromobenzene ND 5.0 Bromobenzene ND 2.0 Bromochloromethane ND 2.0 Bromorem ND 5.0 Bromomethane ND 10.0 Bromomethane ND 10.0 -Butylbenzene ND 5.0 Carbon Tetrachloride ND 5.0 Chlorobenzene ND 5.0 Chloroform ND 5.0 Chloroforethane ND 5.0 Chloroformethane ND 5.0 Dichlorodhoromethane ND 5.0 Dichlorodhoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1	* 5x dilution	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Benzene 5.37 5.0 Bromochloromethane ND 5.0 Bromochloromethane ND 2.0 Bromoform ND 5.0 Bromomethane ND 5.0 Z-Butanone ND 10.0 n-Butylbenzene ND 5.0 Carbon Tetrachloride ND 5.0 Chlorobenzene ND 5.0 Chlorobenzene ND 5.0 Chlorobethydrinylether ND 5.0 Chlorobethydrinylether ND 5.0 Chloroform ND 5.0 Chloroformethane ND 5.0 Chloroformethane ND 5.0 4-Chlorotoluene ND 5.0 Dibromomethane ND 5.0 Dibromomethane ND 5.0 Dibromomethane ND 5.0 Dichlorodifluoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethane ND 0.63 <td>Acetone</td> <td>ND</td> <td>50.0</td>	Acetone	ND	50.0
Bromochloromethane	Acrylonitrile	ND	50.0
Bromochloromethane ND 2.0 Bromoform ND 5.0 Bromomethane ND 2.8 2-Butanone ND 10.0 n-Butylbenzene ND 5.0 Carbon Tetrachloride ND 5.0 Chlorobenzene ND 5.0 Chloroethane ND 5.0 Chloroethylvinylether ND 5.0 Chloroethane ND 5.0 Chloroethane ND 5.0 Chlorotoluene ND 5.0 4-Chlorotoluene ND 5.0 4-Chlorotoluene ND 5.0 4-Chlorotoluene ND 5.0 1-Dibromoethane ND 5.0 Dibromoethane ND 5.0 Dichloroethane ND 5.0 1,1-Dichloroethane ND 0.4 1,1-Dichloroethane ND 0.4 1,2-Dibromoe3-chloropropane ND 5.0 1,2-Dichloropropane ND 5.0	Benzene	5.37	5.0
Bromoform ND 5.0 Bromomethane ND 2.8 2-Butanone ND 10.0 n-Butybenzene ND 5.0 Carbon Tetrachloride ND 5.0 Chlorobenzene ND 5.0 Chlorobethane ND 5.0 Chloroethane ND 5.0 2-Chloroethylvinylether ND 5.0 Chloroform ND 5.0 Chloroform ND 5.0 Chloroform ND 5.0 Chlorotoluene ND 5.0 Chlorotoluene ND 5.0 Dibromothoromethane ND 5.0 Dibriomothoromethane ND 5.0 Dichlorobromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloropropene ND 0.4 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dichlorobenzene ND <t< td=""><td>Bromobenzene</td><td>ND</td><td>5.0</td></t<>	Bromobenzene	ND	5.0
Bromomethane	Bromochloromethane	ND	2.0
2-Butanone ND 10.0 n-Butylbenzene ND 5.0 Carbon Tetrachloride ND 5.0 Chlorobenzene ND 5.0 Chloroethane ND 5.0 Chloroethylvinylether ND 5.0 Chloroform ND 5.0 Chloroform ND 5.0 Chlorothuene ND 5.0 Chlorotoluene ND 5.0 Ubromochloromethane ND 5.0 Dibromochloromethane ND 5.0 Dichlorobromomethane ND 5.0 Dichlorodifluoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethene ND 0.96 1,1-Dichloropropene ND 0.63 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dichloroethane ND 5.0 1,2-Dichloropropane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichloropropane	Bromoform	ND	5.0
n-Butylbenzene ND 5.0 Carbon Tetrachloride ND 5.0 Chlorobenzene ND 5.0 Chloroethane ND 5.0 2-Chloroethylvinylether ND 5.0 Chloroform ND 5.0 Chloroform ND 5.0 Chlorotoluene ND 5.0 2-Chlorotoluene ND 5.0 4-Chiorotoluene ND 5.0 4-Chiorotoluene ND 5.0 Dibromoethane ND 5.0 Dibromoethane ND 5.0 Dichlorodifluoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethane ND 0.63 1,2-Dibromoethane ND 0.63 1,2-Dichloropropane ND 5.0 1,2-Dichloropropane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,3-Dichloropropane ND	Bromomethane	ND	2.8
Carbon Tetrachloride ND 5.0 Chloroebnzene ND 5.0 Chloroethylvinylether ND 5.0 2-Chloroethylvinylether ND 5.0 Chloroform ND 5.0 Chlorotofuene ND 5.0 Chlorotoluene ND 5.0 2-Chiorotoluene ND 5.0 4-Chiorotoluene ND 5.0 Dibromomethane ND 5.0 Dibromochloromethane ND 5.0 Dichlorobromomethane ND 5.0 Dichlorodifluoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethane ND 0.96 1,1-Dichloropropene ND 0.63 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dichloroethane ND 5.0 1,2-Dichloropropane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichlorobenzene ND 5.0 1,4-Di	2-Butanone	ND	10.0
Chlorobenzene ND 5.0 Chloroethane ND 5.0 2-Chloroethylvinylether ND 5.0 Chloroform ND 5.0 Chlorotoluene ND 5.0 2-Chlorotoluene ND 5.0 4-Chiorotoluene ND 5.0 Dibromomethane ND 5.0 Dibromochloromethane ND 5.0 Dibromomethane ND 5.0 Dichlorobromomethane ND 5.0 Dichlorodifluoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethane ND 0.96 1,1-Dichloropopene ND 0.4 1,2-Dibromo-3-chloropropane ND 0.63 1,2-Dichlorobenzene ND 5.0 1,2-Dichloropropane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichlorobenzene ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichloropro		ND	
Chloroethane ND 5.0 2-Chloroethylvinylether ND 5.0 Chloroform ND 5.0 Chloroform ND 5.0 Chlorotoluene ND 5.0 2-Chlorotoluene ND 5.0 4-Chiorotoluene ND 5.0 Dibromomethane ND 5.0 Dibromochloromethane ND 5.0 Dichlorobromomethane ND 5.0 Dichlorobromomethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethane ND 0.96 1,1-Dichloropropene ND 0.63 1,2-Dibromo-3-chloropropane ND 0.63 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichloropropane ND 5.0 2,2-Dichloropr	Carbon Tetrachloride	ND	5.0
2-Chloroethylvinylether ND 5.0 Chloroform ND 5.0 Chloromethane ND 5.0 2-Chlorotoluene ND 5.0 4-Chlorotoluene ND 5.0 Dibromomethane ND 5.0 Dibromochloromethane ND 5.0 Dichlorobromomethane ND 5.0 Dichlorodifluoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethane ND 0.96 1,1-Dichloroethane ND 0.63 1,2-Dibromo-3-chloropropane ND 0.63 1,2-Dichlorobenzene ND 5.0 1,2-Dichloropropane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichlorobenzene ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichloropenzene ND 5.0 2,2-Dichloropropane ND 5.0 2,2-Dichloropethene ND 5.0	Chlorobenzene	ND	5.0
Chloroform ND 5.0 Chloromethane ND 5.0 2-Chlorotoluene ND 5.0 4-Chiorotoluene ND 5.0 Dibromomethane ND 5.0 Dibromochloromethane ND 5.0 Dichlorobromomethane ND 5.0 Dichlorodifluoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethane ND 0.96 1,1-Dichloropropene ND 0.63 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloropropane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,3-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0	-	ND	5.0
Chloromethane ND 5.0 2-Chlorotoluene ND 5.0 4-Chiorotoluene ND 5.0 Dibromomethane ND 5.0 Dibromochloromethane ND 5.0 Dichlorodifluoromethane ND 5.0 Dichlorodifluoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethane ND 0.96 1,1-Dichloropropene ND 0.63 1,2-Dibromoe-3-chloropropane ND 5.0 1,2-Dichloroethane ND 5.0 1,2-Dichloroethane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichloropropane ND 5.0 1,4-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0		ND	5.0
2-Chlorotoluene ND 5.0 4-Chiorotoluene ND 5.0 Dibromomethane ND 5.0 Dibromochloromethane ND 5.0 Dichlorobromomethane ND 5.0 Dichlorodifluoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethene ND 0.96 1,1-Dichloropropene ND 0.63 1,1-Dichloropropene ND 0.63 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloropthane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 2,2-Dichloro	Chloroform	ND	5.0
4-Chiorotoluene ND 5.0 Dibromomethane ND 5.0 Dibromochloromethane ND 5.0 Dichlorobromomethane ND 5.0 Dichlorodifluoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethane ND 0.96 1,1-Dichloropropene ND 0.4 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloroethane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichlorobenzene ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 2,1,3-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 2,2-Dich		ND	5.0
Dibromomethane ND 5.0 Dibromochloromethane ND 5.0 Dichlorobromomethane ND 5.0 Dichlorodifluoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloropropene ND 0.96 1,1-Dichloropropene ND 0.4 1,2-Dibromoethane ND 0.63 1,2-Dibromoethane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloroethane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichlorobenzene ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0		ND	
Dibromochloromethane ND 5.0 Dichlorobromomethane ND 5.0 Dichlorodifluoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloropropene ND 0.96 1,1-Dichloropropene ND 0.4 1,2-Dibromoethane ND 0.63 1,2-Dibromoethane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 c-1,2-Dichloropropane ND 5.0 c-1,2-Dichloropropane ND 5.0 c-1,2-Dichloropropane ND 5.0 c-1,2-Dichloropropane ND 5.0 c-1,3-Dichloropropane ND 0.65		ND	5.0
Dichlorobromomethane ND 5.0 Dichlorodifluoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethene ND 0.96 1,1-Dichloropropene ND 0.4 1,2-Dichloropropene ND 0.63 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloroethane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichlorobenzene ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 c-1,2-Dichloropropene ND 5.0 c-1,2-Dichloropropene ND 5.0 c-1,3-Dichloropropene ND 0.65	Dibromomethane	ND	· 5.0
Dichlorodiffuoromethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethene ND 0.96 1,1-Dichloropropene ND 0.4 1,2-Dibromoethane ND 0.63 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloroethane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichlorobenzene ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0 c-1,2-Dichloroethene ND 5.0 c-1,3-Dichloropropene ND 0.65		ND	5.0
1,1-Dichloroethane ND 5.0 1,1-Dichloroethene ND 0.96 1,1-Dichloropropene ND 0.4 1,2-Dibromoethane ND 0.63 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloroethane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 c-1,2-Dichloroethene ND 5.0 c-1,3-Dichloropropene ND 0.65		ND	5.0
1,1-Dichloroethene ND 0.96 1,1-Dichloropropene ND 0.4 1,2-Dibromoethane ND 0.63 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloropropane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0 c-1,2-Dichloroethene ND 5.0 c-1,3-Dichloropropene ND 0.65		ND	5.0
1,1-Dichloropropene ND 0.4 1,2-Dibromoethane ND 0.63 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloropropane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0 c-1,2-Dichloroethene ND 5.0 c-1,3-Dichloropropene ND 0.65		ND	5.0
1,2-Dibromoethane ND 0.63 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloropropane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichloropropane ND 5.0 2,2-Dichloropropane ND 5.0 c-1,2-Dichloroethene ND 5.0 c-1,3-Dichloropropene ND 0.65		ND	
1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloroethane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichlorobenzene ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0 c-1,2-Dichloroethene ND 5.0 c-1,3-Dichloropropene ND 0.65		ND	0.4
1,2-Dichlorobenzene ND 5.0 1,2-Dichloroethane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichlorobenzene ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0 c-1,2-Dichloroethene ND 5.0 c-1,3-Dichloropropene ND 0.65		ND	0.63
1,2-Dichloroethane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichlorobenzene ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0 c-1,2-Dichloroethene ND 5.0 c-1,3-Dichloropropene ND 0.65	• •	ND	5.0
1,2-Dichloropropane ND 5.0 1,3-Dichlorobenzene ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0 c-1,2-Dichloroethene ND 5.0 c-1,3-Dichloropropene ND 0.65	•	ND	5.0
1,3-Dichlorobenzene ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0 c-1,2-Dichloroethene ND 5.0 c-1,3-Dichloropropene ND 0.65	·	ND	5.0
1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0 c-1,2-Dichloroethene ND 5.0 c-1,3-Dichloropropene ND 0.65		ND	5.0
1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0 c-1,2-Dichloroethene ND 5.0 c-1,3-Dichloropropene ND 0.65		ND	5.0
2,2-DichloropropaneND5.0c-1,2-DichloroetheneND5.0c-1,3-DichloropropeneND0.65		ND	5.0
c-1,2-Dichloroethene ND 5.0 c-1,3-Dichloropropene ND 0.65		ND	5.0
c-1,3-Dichloropropene ND 0.65		ND	5.0
· · · · · · · · · · · · · · · · · · ·		ND	5.0
t-1,2-Dichloroethene ND 5.0		ND	0.65
	t-1,2-Dichloroethene	ND	5.0

CLIENT NAME:

DECOULOS & COMPANY

131 MAIN STREET

SAMPLE TYPE:

GROUNDWATER

REPORT DATE: 06/04/03 ZYZ 05/26/03

COLLECTION DATE: 05/21/03

ANALYZED BY:

PROJECT ID:

REC'D BY LAB:

05/23/03

EXTRACTION DATE: N/A

COLLECTED BY:

CLIENT

DIGESTION DATE: N/A

PRESERVATIVE:

HYDROCHLORIC ACID

VOLATILE ORGANICS

SAMPLE NUMBER:

134707

SAMPLE LOCATION:

DC-D1

* 5x dilution	RESULTS (μg/L)		DE	TECTION LIMIT (μg/L)
t-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methylene Chloride 4-Methyl-2-pentanone Methyl tert-butyl ether * Naphthalene n-propylbenzene Sec-butylbenzene Sec-butylbenzene Tetrachloroethene Trichloroethene Trichlorofluoromethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,2,3-Trichloropropane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	NO NO NO NO NO NO NO NO NO NO NO NO NO N			0.95 5.0 0.19 10.0 5.0 5.0 10.0 5.0 25.0 20 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.
Vinyl Chloride Xylenes Surrogate Recoveries:	ND ND dibromofluoromethane	92%	toluene-d8	2.0 5.0 86%
•	1,2-Dichloroethane	111%	BFB	97%

ND = NOT DETECTED Method Reference:

EPA Method

8260B (1) GC/MS

¹⁾ U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1997, 3rd Edition.

CLIENT NAME:

DECOULOS & COMPANY

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: 05/21/03 REC'D BY LAB:

05/23/03

COLLECTED BY:

CLIENT

PRESERVATIVE:

HYDROCHLORIC ACID

PROJECT ID:

131 MAIN STREET

REPORT DATE: ANALYZED BY:

06/04/03 ZYZ 05/26/03

EXTRACTION DATE: N/A

DIGESTION DATE: N/A

VOLATILE ORGANICS

SAMPLE NUMBER: SAMPLE LOCATION: 134708

DC-E1

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Acetone	ND	50.0
Acrylonitrile	ND	50.0
Benzene	ND	5.0
Bromobenzene	ND	5.0
Bromochloromethane	ND	·• 2.0
Bromoform	ND	5.0
Bromomethane	ND	2.8
2-Butanone	ND	10.0
n-Butylbenzene	ND	5.0
Carbon Tetrachloride	МD	5.0
Chlorobenzene	ND	5.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	5.0
Chloromethane	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
Dibromomethane	ND	5.0
Dibromochloromethane	ND	5.0
Dichlorobromomethane	ND	5.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ЙN	5.0
1,1-Dichloroethene	ND	0.96
1,1-Dichloropropene	ND	0.4
1,2-Dibromoethane	ND	0.63
1,2-Dibromo-3-chloropropane	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dichloroethane	ND	5.0
1,2-Dichloropropane	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,3-Dichloropropane	ND	5.0
1,4-Dichlorobenzene	ND	5.0
2,2-Dichloropropane	ND	5.0
c-1,2-Dichloroethene	ND	5.0
c-1,3-Dichloropropene	ND	0.65
t-1,2-Dichloroethene	ND	5.0

CLIENT NAME:

DECOULOS & COMPANY

PROJECT ID: 131 MAIN STREET

SAMPLE TYPE:

GROUNDWATER

06/04/03

COLLECTION DATE:

05/21/03

REPORT DATE: ANALYZED BY:

REC'D BY LAB:

05/23/03

EXTRACTION DATE:

ZYZ 05/26/03

COLLECTED BY:

CLIENT

DIGESTION DATE:

N/A N/A

PRESERVATIVE:

HYDROCHLORIC ACID

VOLATILE ORGANICS

SAMPLE NUMBER: SAMPLE LOCATION: 134708 DC-E1

	RESULTS (μg/L)		DE	TECTION LIMIT (μg/L)
t-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methylene Chloride 4-Methyl-2-pentanone Methyl tert-butyl ether Naphthalene n-propylbenzene Sec-butylbenzene Styrene tert-butylbenzene Tetrachloroethene Trichloroethene Trichlorofluoromethane	XD XD XD XD XD XD XD XD XD XD			(μ g/L) 0.95 5.0 0.19 10.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Chloride Xylenes	ND ND ND ND ND ND ND ND ND ND ND ND ND N			5.0 5.0 5.0 0.61 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Surrogate Recoveries:	dibromofluoromethane 1,2-Dichloroethane	88% 106%	toluene-d8 BFB	89% 96%

ND = NOT DETECTED

Method Reference:

EPA Method

8260B (1)

GC/MS

¹⁾ U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1997, 3rd Edition.

BLANK

ND

05/25/03

VOLATILE ORGANICS LCS

	%RE	COVERY	
Dichlorodifluoromethane	77%	1,1,2-Trichloroethane	106%
Chloromethane	75%	Tetrachloroethene	99%
Vinyl chloride	78%	1,3-Dichloropropane	106%
Bromomethane	104%	Dibromochloromethane	102%
Chloroethane	117%	EDB	108%
Trichlorofluoromethane	90%	Chlorobenzene	102%
Acrolein	107%	1,1,1,2-tetrachloroethane	97%
1,1-Dichloroethene	86%	Ethylbenzene	110%
Acetone	114%	m,p-Xylene	118%
Carbon Disulfide	85%	o-Xylene	106%
Methylene chloride	101%	Styrene	104%
Acrylonitrile	105%	Bromoform	109%
trans-1,2-Dichloroethene	87%	Isopropylbenzene	114%
MTBE ´	98%	Bromobenzene	99%
1,1-Dichloroethane	90%	1,1,2,2-Tetrachloroethane	114%
Vinyl Acetate	102%	1,2,3-Trichloropropane	115%
2-Butanone	107%	N-propylbenzene	119%
Carbon tetrachloride	86%	2-Chlorotoluene	107%
2,2-Dichloropropane	88%	4-Chlorotoluene	106%
c-1,2-dichloroethene	92%	1,3,5-Trimethylbenzene	112%
Bromochloromethane	97%	tert-Butylbenzene	107%
Chloroform	91%	1,2,4-Trimethylbenzene	115%
1,1,1-Trichloroethane	86%	sec-Butylbenzene	119%
1,1-dihloropropene	97%	1,3-Dichlorobenzene	105%
Benzene	96%	1,4-Dichlorobenzene	105%
1,2-Dichloroethane	94%	p-!sopropy!toluene	115%
Trichloroethene	95%	1,2-Dichlorobenzene	109%
1,2-Dichloropropane	97%	N-Butylbenzene	119%
Dibromomethane	99%	1,2-dibromo-3-chloropropane	130%
Bromodichloromethane	94%	1,2,4-trichlorobenzene	165%
2-Chloroethylvinyl Ether	76%	Hexachlorobutadiene	142%
c-1,3-Dichloropropene	93%	Naphthalene	180%
Toluene	104%	1,2,3-Trichlorobenzene	192%
-1,3-Dichloropropene	102%	• •	

MCP Limits 70%-130%

CLIENT NAME:

DECOULOS & COMPANY

PROJECT ID: REPORT DATE: 131 MAIN STREET

SAMPLE TYPE: COLLECTION DATE:

GROUNDWATER

ANALYZED BY:

06/04/03 QS / GS

REC'D BY LAB:

05/21/03 05/23/03 CLIENT

EXTRACTION DATE:

N/A

COLLECTED BY: PRESERVATIVE:

NITRIC ACID

DIGESTION DATE:

SEE BELOW

DISSOLVED RCRAMETALS

SAMPLE NUMBER: SAMPLE LOCATION:

134710 DCMWA

RESULTS DETECTION LIMIT DIGESTION **ANALYSIS** DATE DATE (mg/L) (mg/L) 05/28/03 05/28/03 ND 0.05 **ARSENIC** BARIUM 0.393 0.03 05/28/03 05/28/03 0.005 05/28/03 05/28/03 CADMIUM ND 05/28/03 05/28/03 **CHROMIUM** ND 0.05 ND 0.010 05/28/03 05/28/03 LEAD 0.001 05/23/03 05/23/03 **MERCURY** ND 0.05 05/28/03 05/28/03 **SELENIUM** ND ND 0.007 05/30/03 SILVER 05/28/03

ND = NOT DETECTED

Method Reference:

EPA Method

3005A (1) Metal Preparation

EPA Method

6010B (1) Inductiv

Inductively Coupled Plasma

EPA Method

245.1 (2) Mar

) Manual Cold Vapor (Mercury)

¹⁾ U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1997, 3rd Edition.

²⁾ U.S. EPA 1994. "Methods for the Determination of Metals in Environmental Samples", Supplement I-EPA/600/R-94-111-May 1994.

METALS QC

1	· ·			1		
	[Spike		1		
	Blank	% Rec.	Limits	MS	Limits	MSD
Arsenic	ND	03%⁻₩	80-120%	105%	75-125%	103%
		, 5, 39 (2)				
Barium	ND	97%	80-120%	97%	75-125%	98%
		Series (Constitution of the Constitution of th				7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Cadmium	ND	105%	80-120%	103%	75-125%	105%
	and the state of t					Aggree of the
Chromium	ND	<i>≈</i> ″102%	80-120%	100%	75-125%	99%
	1. Sec. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	***				***
Lead	ND	103%	80-120%	100%	75-125%	99%
	\$ (\$ 4.5	.⇔^ ?				A Commence of the Commence of
Mercury	∦ ND	91%	80-120%	103%	75-125%	100%
						Marian Car
Selenium	ND	⇒್ಷ108%	80-120%	92%	75-125%	92%
	\$ 10 mm	a. Zi				**
Silver	ND	96%	80-120%	102%	75-125%	102%

GEOLABS, INC. 45 JOHNSON LANE BRAINTREE, MA 02184 M-MA015

LIMITATIONS & EXCLUSIONS

All the professional opinions presented in this report are based solely on the scope of work conducted and sources referred to in our report. The data presented by GeoLabs in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations and materials that were observed at the time the work was conducted. No inferences regarding other conditions, locations or materials, at a later or earlier time may be made based on the contents of the report. No other warranty, express or implied is made.

This report was prepared for the sole use of our client. Portions of the report may not be used independent of the entire report.

All analyses were performed within required holding times, in accordance with EPA protocols and using accepted QA/QC procedures. All QA/QC meets acceptable limits unless otherwise noted. The information contained in this report is, to the best of my knowledge, accurate and complete.

Any and all subsequent pages of this report are chain(s) of custody.

Content Cont	 	····-·	<u>B</u>)	r	 		1 1	 	<u></u>	····
### STANDARD: Turnarounnation STANDARD: SPECIAL INSTRUCTIONS STANDARD:		.	⊣ A 8 P H		۸		7	ا المهنول		
Turnaround Time Turnaround Time Special Institution Specia	3	1:	0	ая ит а яачмат	$\Diamond \rightarrow$	7.7	バクー	++>		
Turnaround Time Turnaround Time Special Institution Specia		7, 4							ا ا ا	ن
Collected By: Inc. Standard	148 8 2	300	ر TED						15 5	oLab >≺
Collected By: Inc. Standard	1 5 5 X	8 7 3	NES				 - -	+ + -	ן ו	95 <u>[</u>]
Collected By: Inc. Standard	ATT / §	263	15 J					+		d By
Collected By: Inc. Standard	Pag C A IN	A 7.0	نبار SES'	, 			<u> </u>			elve OF
Collected By: Inc. Standard	FOI Z	400	SSL VALY							^y Ke
Collected By: Inc. Standard		477	Ø Z	843	א		O X X		8 3 N/	딩
Collected By: Inc. Standard	10,0	3 44	4	HON	֓ ֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓		ヹヹ	VI	\$ W	BS
SeoLabs, Inc. Strangered	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15 3	3	HUF	77	33	عراج احت	<u> </u>	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00
SeoLabs, Inc. Turnaround Tin							<u> </u>		1 3 2	الله الله الله الله الله الله الله الله
SeoLabs, Inc. Turnaround Tin	ä			(BS LE ER	20	3 M.	0000	200	Ta Ba	ed B
Fundamental Laboratogognisted ph	A S			SOLA AMP UMB	けれ	75	SKK	33,	重建	le in i
SeoLabs, Inc. Turnaround Tin	A Day			ე დ ≥	17.		225			elling
SeoLabs, Inc. Turnaround SeoLabs, Inc. Turnaround SeoLabs, Inc. Se	Tim Sign			σαшν		++		 	1 - /	[45]
### Sample	pun	2 2 3	7.0	Ω π < ω	XX	メメ	メイメ	メ メ	S E	
### Sample	la la la la la la la la la la la la la l	3 10 5	2/1	OO∑d					INE C	e,
SeoLabs, Inc. SeoLabs, Inc. Sinvironmental Laboratoric Structure (187) Submoon Lane With HCl Submoon Lane With HCl Anitor (187) Submoon Lane With HCl Anitor (187) Anitor (187) Submoon Lane With HCl Anitor (187) Anitor (187) Submoon Lane With HCl Anitor (187) Anit	Turi hrs hrs	on:	er #:	≥ ∢⊢Œ-×	3 3	33	3 3 3	33	7	S20 F F
SeoLabs, Inc. SeoLabs, Inc. Sinvironmental Laboratoric Structure (187) Submoon Lane With HCl Submoon Lane With HCl Anitor (187) Submoon Lane With HCl Anitor (187) Anitor (187) Submoon Lane With HCl Anitor (187) Anitor (187) Submoon Lane With HCl Anitor (187) Anit	2 4 5 0	umb	Ord By:	<u> </u>		SON	 Y _		HS HS	
SeoLabs, Inc. Submon Lane Fraintree, MA 02184 With HCl Wifee: 781-848-7811 ANIECE:	# 25	oct L	hase	ANACO	WIL	· - ·	10/10	NO	F - 28	
SeoLabs, Inc. Submon Lane Fraintree, MA 02184 With HCl Wifee: 781-848-7811 ANIECE:	100 E	Proje	Purc	NO -> -	2/2	44	₹ \$ }	32	ter ter	ther
GeoLabs, Inc. Environmental Laborator(時記sted p) 45 Johnson Lane Braintree, MA 02184 With HCI Office: 781-848-7811 # 1/2 Braintree, MA 02184 With HCI Office: 781-848-7811 # 1/2 Client: 781-848-7811 # 1/2 Client: 781-848-7811 # 1/2 Client: 781-843-76-25 E-mail: 7445-7795 E-mail: 7445-7795 E-mail: 7445-7795 COLLECTION COLLE	V 73	372-		-					ES: d Wa water	= Ai
GeoLabs, Inc. Environmental Laboratge (1)	to 1 3	-	3	PLE					COD roun faster rinkir	<u>ğ</u> ∢ [0
GeoLabs, Inc. Environmental Laborator(時間 45 Johnson Lane With Office: 781-848-7841	# 유 Ste	121	2 2	SAM					 	။တိဇာ
GeoLabs, Inc. Environmental Laborated 45 Johnson Lane 85 Johnson Lane 85 Johnson Lane 87 Johnson Lane 87 Johnson Lane 87 Johnson Lane 87 Johnson Lane 87 Johnson Lane 87 Johnson Lane 87 Johnson Lane 87 Johnson Lane 87 Johnson Lane 87 Johnson Collection 87 Johnson Collection 87 Johnson Collection 87 Johnson Collection 87 Johnson Lane 87 Johnson La	\$5 € C1 =	ויין א	333	_					MAT GW WW	n 11
GeoLabs, Inc. Environmental Labo 45 Johnson Lane Braintree, MA 02184 Office: 781-84 Gortact: 777-845 Contact: 777-845 Conta	ratq v v 8-78 8-78	7 3 3	ु है।	N SAPUUO SABUUUO	9				1	
GeoLabs, Inferior Environmental Inferior Environmental Inferior In	2184 1-84 1-84	2 2 2 6	3/2/0	E = E	हैं इ	<u>v 2 -</u>	क् व्राह्म	3 %	ES:	A ter
Sample Sample	1 In Ital	3337	4 5 2			2 3 3	2 2 2	2 12	000	λanis = VO.
SAMPLI Client: SAMPLI D SAMPLI Client: Contact: Contact: SAMPLI D SAMPLI Client: SAMPLI D SAMPLI Client: SAMPLI Client: SAMPLI Client: SAMPLI Client: SAMPLI Client: SAMPLI Client: SAMPLI Client: SAMPLI Client: SAMPLI Client: Contact: SAMPLI Client: SAMPLI Client: SAMPLI Client: SAMPLI Client: CANALI CLIENT: SAMPLI Client: CANALI CLIENT: SAMPLI CLIENT: CANALI CLIENT: SAMPLI CLIENT: CONTAMIN CLIEN	abs mer ison		201 . SEA		2			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VER S	tic Ima C Ir V :
SE SE E E E E E E E E E E E E E E E E E	John John Ce:	nt: ress ne:	tact:	MP.	2/2/	1 0 E	V Z C	A 13	Amt Bag Glas	Plas Sum Othe
	Ge Em 45 , Bra Offi	Add	P S E	SAI	80 80			88	CON B B B B B	

マクゲ

GeoLabs, Inc.

Environmental Laboratories

LABORATORY REPORT

PREPARED FOR	Р	R	Ε	Ρ	Α	R	Е	D	F	0	R	
--------------	---	---	---	---	---	---	---	---	---	---	---	--

Decoulos & Company 3 Electronics Avenue Danvers, MA 01923

Attn: Jim Decoulos

PROJECT ID:

616

131 Main Street

Carver, MA

GEOLABS CERTIFICATION #:

M-MA015

SAMPLE NUMBER:

134702 - 134710

DATE PREPARED:

June 4, 2003

PREPARED BY:

Christine Johnson

APPROVED BY:

Jim Chen, Laboratory Director/Date

Location: 45 Johnson Lane Phone: (781) 848-7844 Braintree, MA 02184 Fax: (781) 848-7811

1 of 23

Exhibit VII A-1 MCP Response Action Analytical Report Certification Form

Analytical Report Certification Form

Laboratory Name: GeoLabs, Inc. Laboratory Project #: 134702 - 134710 MCP Site Name: 616 MCP RTN #: MCP SW-846	VPH(x) Other: RCRA-8 EPH(x) Other: Yes ⊠ No □ (if No must address in narrative. Attach additional information if required)
Were all QA/QC performance standards for specified analytical method(s) included in this report met (including those not required to be reported)?	Yes 口 No 区 (if No must address in narrative. Attach additional information if required)
Were all contaminants identified and quantified by the laboratory in the course of this analysis of field samples, by comparison to a calibration standard, even if not a requested analyte, reported by the laboratory to the person that requested the analysis?	Yes * ⊠ No □ (if No must address in narrative. Attach additional information if required) *If Yes , reported in: ☑ Analytical Report □ Case Narrative
Were all samples received by laboratory in a condition consistent with those described on their Chain-of-Custody documentation?	Yes ⊠ No □ (if No must address in narrative. Attach additional information if required)
I, the undersigned, attest under the pains and penalties of peof of those responsible for obtaining the information, the materi best of my knowledge and belief, accurate and complete.	
Signature:	Position: Lab Director
Printed Name: Jim Chen	Date: <u>June 4, 2003</u>

GeoLabs, Inc.

Environmental Laboratories

CASE NARRATIVE

Project ID:

616

Sample Number:

134702 - 134710

Client Name:

Decoulos & Company

Received:

5/13/03

Physical Condition of Samples

This project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

This project was accompanied by satisfactory Chain of Custody documentation. The sample container label(s) agreed with the Chain of Custody.

Analysis of Sample(s)

The following analytical anomalies or non-conformances were noted by the laboratory during the processing of these sample(s):

1. Not all surrogate recoveries pass on EPH samples, matrix interference confirmed

s	Δ	R	٨	P	I	Е	П	N	F	റ	R	'n	47	١.	TΙ	О	IN	ı
•	_	ч.	п	г	-	_	ш			~	11	ч.		•				

OVIN PERM ON AUTO	
Matrix	☑ Aqueous ☐ Soil ☐ Sediment ☐ Other
Containers	☑ Satisfactory ☐ Broken ☐ Leaking
Aqueous Preservative	□ N/A ⊌ pH ≤ 2 □ pH > 2 Comment:
Temperature	☑ Received on ice ☐ Received at 4°C ☐ Other
Extraction Method	Water: Separatory Funnel Soil:

FULL EPH ANALYTICAL RESULTS

FULL EPH ANALY						
Method for Ranges: I	MADEP EPH 98-1					<u> </u>
Method for Target Ana	alyte: 8270 GC/MS		Client ID:	BP-2	BP-3	
Method for PAH Targe	ets: GC/MS		Lab ID:	134702	134703	
EPH Surrogate Stand	ards:		e Collected:	05/21/03	05/21/03	
Aliphatic COD		Dat	e Received:	05/23/03	05/23/03	
Aromatic OTP	ſ	Dat	e Extracted:	05/23/03	05/23/03	
	[Date Fract	ions Analyzed:	05/28/03	05/28/03	
EPH Fractionation Su	rrogates	Date Tar	gets Analyzed:	05/30/03	05/30/03	
2-Fluorobiphenyl	· .		ution Factor:	1.0	1.0	
2-Bromonaphthalene	1		l solids (%):	N/A	"N/A	
Range/Target Ana	lyte	RL	Units			
Unadjusted C11-C22	2 Aromatics'	100	(μg/L)	ND	ND [
	Naphthalene	1.00	(μg/L)	ND	ND	
Diesel PAH	2-Methylnaphthalene	1.00	(μg/L)	ND	ND	
Analytes	Acenaphthene	1.00	(μġ/L)	NĎ	ND	
•	Phenanthrene	1.00	(μg/L)	ND	ND	
	Acenaphthylene	1.00	[(μg/L)	ND .	ND	
	Fluorene	1.00	(μg/L)	ND	ND	
	Anthracene	1.00	(μg/L)	ND	ND	
	Fluoranthene	1.00	(μg/L.)	ND	ND	
Other	Pyrene	1.50	(μg/L)	ND	ND	
Target PAH	Benz[a]Anthracene	1.00	(μg/L)	ND	ND	
Analytes	Chrysene	1.00	(μg/L)	ND	ND	
	Benzo[b]Fluoranthene	1.00	(μg/L)	ND	ND	
	Benzo[k]Fluoranthene	0.120	(μg/L)	ND	ND	
	Benzo[a]Pyrene	0.080	(μg/L)	ND	ND	
	Indeno[1,2,3-c,d]Pyrene	0.240	(μg/L)	ND	ND	
	Dibenzo[a,h]Anthracene	0.500	(μg/L)	ND	ND	
	Benzo[g,h,i]Perylene	1.50	(μg/L)	ND	ND	
C9-C18 Aliphatic Hy	100	(μg/L)	ND	192		
C19-C36 Aliphatic Hy	100	(μg/L)	ND	ND		
C11-C22 Aromatic Hy	/drocarbons ^{1/2}	100	(μg/L)	ND	ND	
Aliphatic Surrogate	% Recovery (COD)			89%	82%	
Aromatic Surrogate	% Recovery (OTP)			102%	97%	
Sample Surrogate /			40-140%	40-140%		
2,2'-Difluorobipheny				54%	55%	
2-Fluorobiphenyl %			" -	49%	51%	
	gate Acceptance Range			40-140%	40-140%	
	ta exclude concentrations of any sur	rogate(s) and/o	or internal stand	ards eluting in	that range	

'Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ${}^{2}C_{11}.C_{22}$ Aromatic Hydrocarbons exclude concentrations of Target PAH Analytes.

CERTIFICATION

Were all QA/QC procedures REQUIRED by the EPH Methor Were all performance/acceptance standards acheived? ■	
Were any significant modifications made to the EPH metho	od?? 图 No □ Yes - Details attached
I attest under the pains and penalties of perjury that, based responsible for obtaining the information, the material conta belief, accurate and complete.	
SIGNATURE:	POSITION: Lab Director
PRINTED NAME: Jim Chen.	DATE: 6/4/03

S	Δ	٨	A T	71	_E	ſΝ	F	റ	R	м	Δ	T	Ю	N	
∙.	_							•			_		•		

SAMPLE INFORMATION						
Matrix		Soil 🗆 Sedin		Other		
Containers		Broken □ I				
Aqueous Preservative		: 🗆 pH > 2 Сс				
Temperature	☑ Received on ice		eived at 4° C			
Extraction Method	Water: Separatory Funn	<u>lel</u>		Soil:		·
FULL EPH ANALYTIC						
Method for Ranges: MAE			Oli and ID.	DC 44	I BODA I	
Method for Target Analyte	: 8270 GC/MS		Client ID:	DC-A1	DC-B1	
Method for PAH Targets:	GC/MS		Lab ID:	134704	134705	,
EPH Surrogate Standards	S :		e Collected:	05/21/03	05/21/03	,
Aliphatic COD			e Received:	05/23/03	05/23/03	
Aromatic OTP			e Extracted:	05/23/03	05/23/03	
			ions Analyzed:	05/28/03	05/28/03	,
EPH Fractionation Surrog	ates		gets Analyzed:	05/30/03	05/30/03	
2-Fluorobiphenyl			ition Factor:		ilution	
2-Bromonaphthalene			l solids (%):	N/A	N/A	
Range/Target Analyte		ŘL	Units			Dilution
Unadjusted C11-C22		100	(μg/L)	456000	863000	125
	Naphthalene	1.00	(μg/L)	113	110	1
Diesel PAH	2-Methylnaphthalene	25.0	(μg/L)	4597	4524	25
Analytes	Acenaphthene	1.00	(μg/L)	5 1.5	40.9	11
	Phenanthrene	1.00	(μg/L)	73. 9	ND	1
	Acenaphthylene	1.00	(μg/L)	13.1	10.3	1
	Fluorene	1.00	(μg/L)	182	180	1
	Anthracene	1.00	(μg/L)	308	260	1
	Fluoranthene	1.00	(μg/L)	9.91	8.12	1
Other	Pyrene	1.50	(μg/L)	58.4	63.4	1
Target PAH	Benz[a]Anthracene	1.00	(μg/L)	ND	ND	1
Analytes	Chrysene	1.00	(μg/L)	2.22	2.76	1
•	Benzo[b]Fluoranthene	1.00	(μg/L)	ND	ND	1
	Benzo[k]Fluoranthene	0.120	(μg/L)	0.636	0.742	1
	Benzo[a]Pyrene	0.080	(μg/L)	0.431	0.474	1
	Indeno[1,2,3-c,d]Pyreno		(μg/L)	ND	0.247	1
	Dibenzo[a,h]Anthracene		(μg/L)	ND	ND	1
	Benzo[g,h,i]Perylene	1.50	(μg/L)	ND	ND]	1
C9-C18 Aliphatic Hydro		125000	(μg/L)	2040000	2040000	1250
C19-C36 Aliphatic Hydro		50000	(μg/L)	732000	696000	500
C11-C22 Aromatic Hydro		12500	(μg/L)	451000	858000	125
Aliphatic Surrogate % F				961%	_1420%*	
Aromatic Surrogate %				793%*	884%*	
Sample Surrogate Acce				40-140%	40-140%	
2,2'-Diffuorobiphenyl %				74%	5× 67%	
2-Fluorobiphenyl % Re				47%	40%	
Fractionation Surrogate	Acceptance Range			40-140%	40-140%	
	clude concentrations of any s			ards eluting in	that range	
² C ₁₁ ,C ₂₂ Aromatic Hydrocarb	ons exclude concentrations of	f Target PAH Ana	lly tes.		_	

CERTIFICATION	* Matrix interference confirmed by re-run
	RED by the EPH Method followed? ■ Yes □ No - Details attached
Were all performance/acceptance s	tandards acheived? Yes No - Details attached See * above
Were any significant modifications r	nade to the EPH method?? ■ No □ Yes - Details attached
responsible for obtaining the information belief, accurate and complete.	s of perjury that, based upon my inquiry of those individuals immediately ation, the material contained in this report is, to the best of my knowledge and
SIGNATURE:	POSITION: Lab Director
PRINTED NAME: Jim Che	

SAMPLE INFORMATION

Matrix	□ Aqueous □ Soil □ Sediment □ Other
Containers	☑ Satisfactory ☐ Broken ☐ Leaking
Aqueous Preservative	□ N/A ⊠ pH ≤ 2 □ pH > 2 Comment:
Temperature	☑ Received on ice ☐ Received at 4°C ☐ Other
Extraction Method	Water: Separatory Funnel Soil:

FULL EPH ANALYTICAL RESULTS

FULL EPH ANALYTIC						
Method for Ranges: MA						
Method for Target Analy			Client ID:	DC-C1		
Method for PAH Targets	: GC/MS		Lab ID:	134706		
EPH Surrogate Standar		e Collected:	05/21/03			
Aliphatic COD	[Date	e Received:	05/23/03		
Aromatic OTP	[Date	Extracted:	05/23/03		
	[Date Fracti	ons Analyzed:	05/28/03		
EPH Fractionation Surro	gates	Date Targ	gets Analyzed:	05/30/03		
2-Fluorobiphenyl	- I		ition Factor:			
2-Bromonaphthalene			solids (%):	N/A		
Range/Target Analyt	ie [RL	Units		Dilution	
Unadjusted C11-C22	Aromatics	100	(μg/L)	794000	125	
	Naphthalene	1.00	(μg/L)	117	1	
Diesel PAH	2-Methylnaphthalene	25.0	(μg/L)	4854	25	
Analytes	Acenaphthene	1.00	(μg/L)	31.8	1	
	Phenanthrene	1.00	(μg/L)	ND	1	
	Acenaphthylene	1.00	(μg/L)	9.00	1	
ļ	Fluorene	1.00	(μg/L)	150	1	
İ	Anthracene	1.00	(μg/L)	281	1	
	Fluoranthene	1.00	(μg/L)	10.0	1	
Other	Pyrene	1.50	(μg/L)	70.9	1	
Target PAH	Benz[a]Anthracene	1.00	(μg/L)	ИD	1	
Analytes	Chrysene	1.00	(μg/L)	2.86	1	
	Benzo[b]Fluoranthene	1.00	(μg/L)	ND	1	
1	Benzo[k]Fluoranthene	0.120	(μg/L)	0.265	1	
1	Benzo[a]Pyrene	0.080	(μg/L)	0.571	1	
	Indeno[1,2,3-c,d]Pyrene	0.240	(μg/L)	0.367	1	
	Dibenzo[a,h]Anthracene	0.500	(μg/L)	ND	1	
	Benzo[g,h,i]Perylene	1.50	(μg/L)	ND	1	
C9-C18 Aliphatic Hydro		125000	(μg/L)	2150000	1250	
C19-C36 Aliphatic Hyd		50000	(μg/L)	721000	500	
C11-C22 Aromatic Hyd		12500	(μg/L) ""	788000	125	
Aliphatic Surrogate %				953%		
Aromatic Surrogate %				1220%		
Sample Surrogate Ac				40-140%		
2,2'-Difluorobiphenyl				73%		
2-Fluorobiphenyl % R				40%		
	te Acceptance Range			40-140%		
L'Hudrocarbon Dance data «	volude concentrations of any cur	ronala(e) and/o	r internal etand	arde elutina in t	hat range	

'Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ${}^2C_{11}.C_{22}$ Aromatic Hydrocarbons exclude concentrations of Target PAH Analytes.

CERTIFICATION	* Matrix interference confirmed by re-run
Were all QA/QC procedures RE	QUIRED by the EPH Method followed? Yes No - Details attached
	ce standards acheived? ☐ Yes 🗷 No - Details attached See * above
Were any significant modification	ons made to the EPH method?? 🗵 No 🛘 Yes - Details attached
	nalties of perjury that, based upon my inquiry of those individuals immediately cormation, the material contained in this report is, to the best of my knowledge and
SIGNATURE:	POSITION: Lab Director
PRINTED NAME: Jim	Chen DATE: 6/4/03

				-
SAMPL	-1	NFO	RMA	LION

OWING PE DIS COMMENS		_
Matrix	■ Aqueous □ Soil □ Sediment □ Other	_
Containers	Satisfactory □ Broken □ Leaking	_
Aqueous Preservative	□ N/A 🗷 pH ≤ 2 □ pH > 2 Comment:	
Temperature	■ Received on ice ☐ Received at 4°C ☐ Other	_
Extraction Method	Water: Separatory Funnel Soil:	
	· · · · · · · · · · · · · · · · · · ·	

FULL	. EPH	ANALY	TIÇAL	RESULTS
-------------	-------	-------	-------	---------

FULL EPH ANALY						
Method for Ranges: N				8887	_ BA =/	
Method for Target Ana			Client ID:	DC-D1	DC-E1	DC-F1
Method for PAH Targe	ets: GC/MS		Lab ID:	134707	134708	134709
EPH Surrogate Standa	ards:		e Collected:	05/21/03	05/21/03	05/21/03
Aliphatic COD			e Received:	05/23/03	05/23/03	05/23/03
Aromatic OTP		Dat	e Extracted:	05/23/03	05/23/03	05/23/03
		Date Fract	tions Analyzed:	05/28/03	05/28/03	05/28/03
EPH Fractionation Sur	rrogates	Date Tar	gets Analyzed:	05/30/03	05/30/03	05/30/03
2-Fluorobiphenyl			ition Factor:	1.0	1.0	1.0
2-Bromonaphthalene	ľ	Tota	l solids (%):	N/A	N/A	N/A
Range/Target Anal	yte	RL	Units	 -		-
Unadjusted C11-C2	2 Aromatics	100	(μg/L)	ND	112	ND
<u> </u>	Naphthalene	1.00	(μg/L)	ND.	ND	ND
Diesel PAH	2-Methylnaphthalene	1.00	(μg/L)	ND	ND	ND
Analytes	Acenaphthene	1.00	(μg/L)	ND	ND	ND
_	Phenanthrene	1.00	(μg/L)	ND	ND	ND
 -	Acenaphthylene	1.00	(μg/L)	ND	ND	ND
	Fluorene	1.00	(μg/L)	ND	ND	ND
	Anthracene	1.00	(μg/L)	ND	ND	ND
	Fluoranthene	1.00	(μg/L)	ND	ND	, ND
Other	Pyrene	1.50	(μg/L)	ND	ND _	ND
Target PAH	Benz[a]Anthracene	1.00	(μg/L)	ND	ND	ND
Analytes	Chrysene	1.00	(μg/L)	ND	ND	ND
	Benzo[b]Fluoranthene	1.00	(μg/L)	ND	ND	ND
	Benzo[k]Fluoranthene	0.120	(μ g/L)	ND	ND	ND
	Benzo[a]Pyrene	0.080	(μg/L)	ND	ND	ND
1	Indeno[1,2,3-c,d]Pyrene	0.240	(μg/L)	ND	ND	ND
	Dibenzo[a,h]Anthracene	0.500	(μg/L)	ND	ND	ND
	Benzo[g,h,i]Perylene	1.50	(μg/L)	ND	ND	ND
C9-C18 Aliphatic Hyd		100	(μg/L)	188	266	ND
C19-C36 Aliphatic Hye	drocarbons'	100	(μg/L)	ND	ND	ND
C11-C22 Aromatic H	ydrocarbons ^{1,2}	100	(μg/L)	ND	112	ND
Aliphatic Surrogate	% Recovery (COD)			68% 🤝	80%	66%
Aromatic Surrogate				79%	101%	90%
Sample Surrogate A				40-140%	40-140%_	40-140%
2,2'-Diffuorobipheny				26%*	51%	49%
2-Fluorobiphenyl %				22%	49%	43%
Fractionation Surrog	jate Acceptance Range			40-140%	40-140%	40-140%
Library Dec. 1984		4 _ / 4 \	:	anda alviiaa ia	that conce	

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ²C₁₁.C₂₂ Aromatic Hydrocarbons exclude concentrations of Target PAH Analytes.

CERTIFICATION	* Matrix interference confirmed by re-run	
	QUIRED by the EPH Method followed? 🗵 Yes 🛘 No - Details attached	
	e standards acheived? Yes No - Details attached See * above	
Were any significant modification	ns made to the EPH method?? 🗵 No 🗆 Yes - Details attached	
	alties of perjury that, based upon my inquiry of those individuals immediately rmation, the material contained in this report is, to the best of my knowledge	
SIGNATURE:	POSITION: Lab Director	
PRINTED NAME: Jim C	then DATE: 6/4/03	

SAMPLE INFORMATION ☐ Soil ☐ Sediment Other Aqueous Matrix □ Broken □ Leaking Satisfactory X Containers ☑ pH ≤2 ☐ pH > 2 Comment: Aqueous Preservative N/A ☐ Received at 4° C ☐ Other X Received on ice Temperature Soil: Water: Separatory Funnel Extraction Method FULL EPH ANALYTICAL RESULTS Method for Ranges: MADEP EPH 98-1 Client ID:I DCMWA Method for Target Analyte: 8270 GC/MS Lab ID: 134710 Method for PAH Targets: GC/MS Date Collected: 05/21/03 EPH Surrogate Standards: 05/23/03 Date Received: Aliphatic COD 05/23/03 Date Extracted: Aromatic OTP 05/28/03 Date Fractions Analyzed: 05/30/03 Date Targets Analyzed: EPH Fractionation Surrogates Dilution Factor: 1.0 2-Fluorobiphenyl N/A Total solids (%): 2-Bromonaphthalene Units RL Range/Target Analyte (μg/L) ND 100 Unadjusted C11-C22 Aromatics (µg/L) 8.21 1.00 Naohthalene (µg/L) 1.30 1.00 2-Methylnaphthalene Diesel PAH 1.00 (μg/L) ND Analytes Acenaphthene Phenanthrene 1.00 (μ**g/L** ND (μ**g/L**) 1.00 ND Acenaphthylene $(\mu g/L)$ 1.00 ND Fluorene (µg/L) 1.00 ND Anthracene 1.00 (µg/L) ND Fluoranthene 1.50 (µg/L) ND Other Pyrene 1.00 $(\mu g/L)$ ND Benz[a]Anthracene Target PAH 1.00 (µg/L) ND Analytes Chrysene 1.00 (µg/L) ND Benzo[b]Fluoranthene 0.120 (μg/L) ND Benzo[k]Fluoranthene 0.080 (μg/L) ND Benzo[a]Pyrene 0.240 (µg/L) ND Indeno[1,2,3-c,d]Pyrene Dibenzo[a,h]Anthracene 0.500 (µg/L) ND Benzo[g,h,i]Perylene (μg/L) 1.50 ND $(\mu g/L)$ ND C9-C18 Aliphatic Hydrocarbons 100 <u>(μg/L)</u> ND C19-C36 Aliphatic Hydrocarbons <u>100</u> 100 $(\mu g/L)$ ND C11-C22 Aromatic Hydrocarbons Aliphatic Surrogate % Recovery (COD) 86% 97% Aromatic Surrogate % Recovery (OTP) 40-140% Sample Surrogate Acceptance Range 53% 2,2'-Difluorobiphenyl % Recovery 2-Fluorobiphenyl % Recovery 49% 40-140% Fractionation Surrogate Acceptance Range Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ²C₁₁,C₂₂ Aromatic Hydrocarbons exclude concentrations of Target PAH Analytes. CERTIFICATION Were all QAQC procedures REQUIRED by the EPH Method followed? 🗷 Yes 🔲 No - Details attached Were all performance/acceptance standards acheived?

Yes

No - Details attached Were any significant modifications made to the EPH method??

No

Yes - Details attached I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. POSITION: Lab Director SIGNATURE: 6/4/03 PRINTED NAME: Jim Chen DATE:

EPH - QC - Ranges EXTRACTABLE PETROLEUM HYDROCARBONS

QC RESULTS

	Method	MDL (~/L)	Spike %	Spike % Recovery 2		RPD	%
*c9-c18 Aliphatics	Blank 25.8	(μ g/L) 100	66.0	70.1	40-140	4.33	<u>≤</u> 50
c19-c36 Aliphatics	22.7	100	95.9	104 🐇	40-140	7.08	≤ 50
c11-c22 Aromatics	42.5	100	79.4	71.7	40-140	8,35	≤ 50

Surrogate % Recovery:

COD	82%	40-140	72% - 95%	40-140	27.4%	≤ 50
OTP	100%	40-140	96% 99%	40-140	3.10%	≤ 50

EPH - QC Target Analyte EXTRACTABLE PETROLEUM HYDROCARBONS

QC RESULTS

	Method Blank	Spike % Recovery 1	Limits %
Naphthalene	ND_	47%	40-140%
Acenapthalene	ND_	66%	40-140%
Anthracene	ND	74%	40-140%
Pyrene	ND	83%	40-140%
Chrysene	ND	94%	40-140%

SAMPLE INFORMATION

Matrix	⊠ Aqu	ieous 🗆 So	oil 🛘 Sedim	ment 🗆 🤇	Other			
Containers		Satisfactory	☐ Broken	☐ Leaking				
	Aqueous ☐ N/A ☑ pH ≤ 2 ☐ pH > 2 Comment:							
Sample	Soil or				in MeOH or air		ners	mi MeOH
Preservative	Sediment		s received in I		Covering soil	? □ Not		□1:1 <u>+</u> 25%
<u> </u>	<u> </u>		ed in air tight c					☐ Other
Temperature	1	Received on ice	<u>e □ Re</u>	eceived at 4° (·	
VPH ANAL			!		Client ID:	BP-2	BP-3	DC-D1
Method for R	•		!		Lab ID:	134702	134703	134707
1	-	tes: MADEP VF	PH !		e Collected:	05/21/03	05/21/03	05/21/03
VPH Surroga			!		e Received:	05/23/03	05/23/03	05/23/03
	•	Dibromotoluen	. 1		te Analyzed:	05/29/03	05/29/03	05/29/03
	FID (2,5-D	Dibromotoluene	e) '	_	ution Factor:	1.0	1.0	1.0
l				Tota	ıl solids (%):	N/A	N/A	N/A
Range/Targ			Elut. Range	RL	Units			
Unadjusted			N/A	40	ug/L	ND	ND	108
Unadjusted			N/A	15	ug/L	ND	ND	ND
Methyl tert			C ₅ -C ₈ Aliph.	5	ug/L	ND _	ND	192
Benzene			C ₅ -C ₈ Aliph.	5	ug/L	ND	ND	5.20
Toluene			C ₅ -C ₈ Aliph.	5	ug/L	ND	ИD	ND
Ethylbenzer	ne		C ₉ -C ₁₂ Aliph.	5	ug/L	ND	ND	ND
m&p-Xylene			C ₉ -C ₁₂ Aliph.	5	ug/L	ND	ND	ND
o-Xylene			C ₉ -C ₁₂ Aliph.	5	ug/L	ND	ND	ND
Naphthalen	 ie		N/A	20	ug/L	ND	ND	ND
C5-C8 Aliph		carbons ^{1,2}	N/A	40	ug/L	ND	ND	ND
C9-C12 Alip	hatic Hydro	ocarbons ^{1,3}	N/A	15	ug/L	ND	ND	ND
C9-C10 Aror	matic Hydro	ocarbons'	C ₉ -C ₁₂ Aliph.	55	ug/L	ND	ND	ND
2.5-Dibrom	otoluene (F	PID) Surrogate	Recovery	1		91%	98%	92%
$\overline{}$		ID) Surrogate		<u> </u>		72%	76%	79%
Surrogate A				1		70-130%	70-130%	70-130%
		exclude concentral	tions of any su	rrogate(s) and/c	or internal stand	lards eluting in	that range	
² C ₅ -C ₈ Aliphatic	ic Hydrocarbo	ons exclude the co	oncentration of	Target Analytes	s eluting in that	range		
		ons exclude conc					f C9-C10 Aromat	tic Hydrocarbon
OF DITIE!	TION							
CERTIFICA		edures REQUI	IDED bytho	VDU Methor	followed?	□ Voe F	No Detail	in attached
	•	rmance /accep	-					
4	•	rmance /accep nodifications m	•					
Welle ally c.	igninoan,	IUQIIIOauono	lauc ware .	/FILIHOUISS,	, as spoome.	d III Ooot	<u>بند :.</u> پ	
I attest unde	er the pains	s and penalties	s of perjury (that, based ι	ıpon my inqu	uiry of those	individuals	
	,	le for obtaining				•		
		dge, accurate						
	•					TOO!T!ON	t et Dineste	
51	GNATURE	E:		•		POSITION:	Lab Directo	r
PRIN	TED NAME	E: Jim Chen				DATE:	06/04/03	

SAMPLE INFORMATION Soil

Sediment Other Aqueous Matrix □ Broken □ Leaking Satisfactory Containers pH < 2 □ pH > 2 Comment: Aqueous □ N/A ☐ Samples NOT preserved in MeOH or air-tight containers mi MeOH □ N/A Soil or Sample Samples received in MeOH ☐ Covering soil ? ☐ Not □1:1<u>+</u>25% Preservative Sediment □ Other Received in air tight container ☐ Received at 4° C ☐ Other Temperature X Received on ice DC-F1 DC-E1 Client ID: VPH ANALYTICAL RESULTS 134709 Lab ID: 134708 Method for Ranges: MADEP VPH 05/21/03 05/21/03 Date Collected: Method for Target Analytes: MADEP VPH 05/23/03 Date Received: 05/23/03 VPH Surrogate Standards 05/29/03 Date Analyzed: 05/29/03 PID (2.5-Dibromotoluene) Dilution Factor: 1.0 1.0 FID (2.5-Dibromotoluene) Total solids (%): N/A N/A Units Range/Target Analyte Elut. Range RL ND ND Unadjusted C5-C8 Aliphatics³ N/A 40 ug/L ND 15 ND Unadjusted C9-C12 Aliphatics¹ N/A ug/L ND 5 ug/L ND Methyl tert-butyl ether C₅-C₈ Aliph. ND 5 ND ug/L Benzene C5-C8 Aliph. C₅-C₈ Aliph. 5 ua/L ND ND Toluene 5 ug/L ND ND Ethylbenzene C9-C12 Aliph. 5 ND ND m&p-Xylenes C₉-C₁₂ Aliph. ug/L 5 ND ND ug/L o-Xylene C9-C12 Aliph. 20 ND ug/L ND Naphthalene N/A C5-C8 Aliphatic Hydrocarbons 1,2 ND N/A 40 ug/L ND C9-C12 Aliphatic Hydrocarbons 1,3 ND 15 ug/L ND N/A C9-C10 Aromatic Hydrocarbons ND C9-C12 Aliph. 55 ug/L ND 93% 96% 2.5-Dibromotoluene (PID) Surrogate Recovery 73% 76% 2.5-Dibromotoluene (FID) Surrogate Recovery 70-130% 70-130% Surrogate Acceptance Range Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range Cg-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of Cg-C10 Aromatic Hydrocarbons CERTIFICATION Were all QA/QC procedures REQUIRED by the VPH Method followed? ☑ Yes ☐ No - Details attached Were all QA/QC performance /acceptance standards achieved? ☑ Yes ☐ No - Details attached Were any significant modifications made to the VPH method, as specified in Sect 11.3.? 🗵 No I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immedately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge, accurate and complete.

POSITION: Lab Director

06/04/03

DATE:

SIGNATURE:

PRINTED NAME: Jim Chen

SAMPLE INFORMATION

Matrix								
Containers	ontainers 🗵 Satisfactory 🗆 Broken 🗆 Leaking							
	Aqueous ☐ N/A 図 pH ≤ 2 ☐ pH > 2 Comment:							
Sample	Soil or			Samples NOT preserved in MeOH or air-tight containers ml MeOH				
Preservatives	Sediment			eceived in MeOH				
		☐ Receive	d in air tight c					□ Other
Temperature	× F	Received on ic	e □ Re	eceived at 4° (;
VPH ANAL	YTICAL RE	SULTS			Client ID:	DCMWA		
Method for R	anges: MAD	EP VPH			Lab ID:	134710		
Method for Ta	arget Analyte	s: MADEP VI	PH	Dat	e Collected:	05/21/03		
VPH Surroga	ite Standards	;		Dat	e Received:	05/23/03		
		bromotoluen:	e)	Dat	e Analyzed:	05/29/03		
	• •	bromotoluen			ition Factor:	1.0 / 5.0*		
	· ·• (-, · - ·		-,		solids (%):	N/A		
Range/Targ	et Analyte		Elut. Range	RL	Units			
Unadjusted		hatics1	N/A	40	ug/L	571		
Unadjusted			N/A	15	ug/L	287		
Methyl tert			C ₅ -C ₈ Aliph.	25*	ug/L	992		
Benzene	a way v v v v v v v v v v v v v v v v v v v		C ₅ -C ₈ Aliph.	5	ug/L	40.4		
Toluene			C ₅ -C ₈ Aliph.	5	ug/L	22.0		
Ethylbenze	ne		C ₉ -C ₁₂ Aliph.	5	ug/L	202	7.5	
m&p-Xylen			C ₉ -C ₁₂ Aliph.	5	ug/L	454		
o-Xylene			C ₉ -C ₁₂ Aliph.	5	ug/L	143		
Naphthaler	ne		N/A	20	ug/L	25.2		
C5-C8 Aliph		arbons ^{1,2}	N/A	40	ug/L	ND		
C9-C12 Alipi	hatic Hydrod	carbons ^{1,3}	N/A	15	ug/L	ND		
C9-C10 Aro			C ₉ -C ₁₂ Aliph.	55	ug/L	961		
2,5-Dibromo	otoluene (PI	D) Surrogate	Recovery			100%		
		D) Surrogate				83%		
Surrogate A						70-130%		
¹ Hydrocarbon F	Range data exe	clude concentra	tions of any sur	rogate(s) and/o	r internal stand	ards eluting in t	that range	
		s exclude the co						
3C9-C12 Aliphat	ic Hydrocarbon	is exclude conc	of Target Analy	tes eluting in th	at range AND o	oncentration of	C ₉ -C ₁₀ Aromat	ic Hydrocarbon:
OFDTIFICA	TION							
CERTIFICA		beer BEOU	DED to the	VD1 1 8 4 - 45	ten do f	7 V., D	No Detail	
Were all QA								
		mance /accep odifications m						
vvere any si	gmilicant inc	ouncations n	lade to the v	rn memod	, as specified	ı in Sect 11.	3. F EAL IND	
l attest unde	er the pains	and penaltie:	s of periury t	hat, based u	pon mv inau	irv of those	individuals	
1	-	for obtaining				•		
		ge, accurate			corrar correar		port ra, to	
	,sag	, -,						
Si	GNATURE:					POSITION:	Lab Directo	r
					•			
PRINT	ΓED NAME:	Jim Chen				DATE:	06/04/03	

Matrix:	Water	μ g/L	LCS %	Limit	BLANK
MTBE			96%	70-130%	ND
Benzene		· · ·	88%	70-130%	ND
Toluene	_		108%	70-130%	ND
Ethyl Ben	zene	_	97%	70-130%	ND
m,p-xylen	e		122%	70-130%	ND
o-xylene	··		106%	70-130%	ND
Naphthale	ene		104%	70-130%	ND
Surrogat	e Recoveries:				
2,5-Dibroi	motoluene (PiD)	97%		
2,5-Dibro	motoluene (FiD)	88%		

CLIENT NAME:

DECOULOS & COMPANY

GROUNDWATER

SAMPLE TYPE: COLLECTION DATE: 05/21/03 REC'D BY LAB:

COLLECTED BY:

05/23/03

PRESERVATIVE:

CLIENT HYDROCHLORIC ACID PROJECT ID:

REPORT DATE:

131 MAIN STREET

06/04/03 ZYZ 05/25/03 ANALYZED BY:

EXTRACTION DATE: N/A

DIGESTION DATE:

N/A

1,2-DIBROMOETHANE

SAMPLE NUMBER

SAMPLE LOCATION RESULTS (μ**g/L**)

DETECTION LIMIT (μ**g/L**)

134703

BP-3

ND

0.650

134710

DCMWA

ND

0.650

ND = NOT DETECTED

CALCULATIONS BASED ON DRY WEIGHT

Method Reference:

EPA Method

8260B (1) GC/MS

5035 Collection Method

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1997, 3rd Edition.

CLIENT NAME:

DECOULOS & COMPANY

PROJECT ID: REPORT DATE: 131 MAIN STREET

SAMPLE TYPE:

GROUNDWATER

ANALYZED BY:

06/04/03

REC'D BY LAB:

COLLECTION DATE: 05/21/03 05/23/03

EXTRACTION DATE: N/A

ZYZ 05/26/03

COLLECTED BY:

CLIENT

DIGESTION DATE:

PRESERVATIVE:

HYDROCHLORIC ACID

N/A

VOLATILE ORGANICS

SAMPLE NUMBER:

134707

DC-D1 SAMPLE LOCATION:

5x dilution	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Acetone	ND	50.0
Acrylonitrile	ND	50.0
Benzene	5.37	5.0
Bromobenzene	ND	5.0
Bromochloromethane	· ND	2.0
Bromoform	ND	5.0
Bromomethane	ND	2.8
2-Butanone	ND	10.0
n-Butylbenzene	ND	5.0
Carbon Tetrachloride	ND	5.0
Chlorobenzene	ND	5.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	5.0
Chloromethane	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
Dibromomethane	ND	. 5.0
Dibromochloromethane	ND	5.0
Dichlorobromomethane	ND	5.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	5.0
1,1-Dichloroethene	ND	0.96
1,1-Dichloropropene	ND	0.4
1,2-Dibromoethane	ND	0.63
1,2-Dibromo-3-chloropropane	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dichloroethane	ND	5.0
1,2-Dichloropropane	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,3-Dichloropropane	ND	5.0
1,4-Dichlorobenzene	ND	5.0
2,2-Dichloropropane	ND	5.0
c-1,2-Dichloroethene	ND	5.0
c-1,3-Dichloropropene	ND	0.65
t-1,2-Dichloroethene	ND	5.0

CLIENT NAME:

DECOULOS & COMPANY

PROJECT ID:

131 MAIN STREET

SAMPLE TYPE:

GROUNDWATER

REPORT DATE: ANALYZED BY:

06/04/03

COLLECTION DATE:

05/21/03 05/23/03

REC'D BY LAB:

EXTRACTION DATE: N/A

ZYZ 05/26/03

COLLECTED BY:

CLIENT

DIGESTION DATE:

N/A

PRESERVATIVE:

HYDROCHLORIC ACID

VOLATILE ORGANICS

SAMPLE NUMBER:

134707

SAMPLE LOCATION:

DC-D1

* 5x dilution	RESULTS (μg/L)		DET	ECTION LIMIT (μg/L)
t-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methylene Chloride 4-Methyl-2-pentanone Methyl tert-butyl ether * Naphthalene n-propylbenzene Sec-butylbenzene Sec-butylbenzene Styrene tert-butylbenzene Trichloroethene Trichloroethene Trichlorofluoromethane 1,1,2-Trichloroethane 1,1,2-Tetrachloroethane 1,2,3-Trichloropropane 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene	00000000000000000000000000000000000000			0.95 5.0 0.19 10.0 5.0 10.0 5.0 25.0 20 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.
1,3,5-Trimethylbenzene Vinyl Chloride Xylenes	ND ND ND			2.0 5.0
Surrogate Recoveries:	dibromofluoromethane 1,2-Dichloroethane	92% 111%	toluene-d8 BFB	86% 97%

ND = NOT DETECTED

Method Reference:

EPA Method

8260B (1) GC/MS

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1997, 3rd Edition.

CLIENT NAME:

DECOULOS & COMPANY

131 MAIN STREET

SAMPLE TYPE:

GROUNDWATER

REPORT DATE:

06/04/03

COLLECTION DATE: 05/21/03 REC'D BY LAB:

05/23/03

ANALYZED BY:

PROJECT ID:

ZYZ 05/26/03

COLLECTED BY:

CLIENT

EXTRACTION DATE: N/A

PRESERVATIVE:

HYDROCHLORIC ACID

N/A DIGESTION DATE:

VOLATILE ORGANICS

SAMPLE NUMBER:

134708

SAMPLE LOCATION:

DC-E1

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Acetone	ND	50.0
Acrylonitrîle	ND	50.0
Benzene	ND	5.0
Bromobenzene	ND	5.0
Bromochloromethane	ND	2.0
Bromoform	ND	5.0
Bromomethane	ND	2.8
2-Butanone	ND	10.0
n-Butylbenzene	ND	5.0
Carbon Tetrachloride	ND	5.0
Chlorobenzene	ND	5.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	5.0
Chloromethane	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
Dibromomethane	ND	5.0
Dibromochloromethane	ND	5.0
Dichlorobromomethane	ND	5.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	5.0
1,1-Dichloroethene	ND	0.96
1,1-Dichloropropene	ND	0.4
1,2-Dibromoethane	ND	0.63
1,2-Dibromo-3-chloropropane	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dichloroethane	ND	5.0
1,2-Dichloropropane	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,3-Dichloropropane	ND	5.0
1,4-Dichlorobenzene	ND	5.0
2,2-Dichloropropane	ND	5.0
c-1,2-Dichloroethene	ND	5.0
c-1,3-Dichloropropene	ND	0.65
t-1,2-Dichloroethene	ND	5.0

CLIENT NAME:

DECOULOS & COMPANY

PROJECT ID:

131 MAIN STREET

SAMPLE TYPE:

GROUNDWATER

REPORT DATE: ANALYZED BY:

06/04/03

COLLECTION DATE: REC'D BY LAB:

05/21/03 05/23/03

EXTRACTION DATE: N/A

ZYZ 05/26/03

COLLECTED BY:

CLIENT

DIGESTION DATE:

N/A N/A

PRESERVATIVE:

HYDROCHLORIC ACID

VOLATILE ORGANICS

SAMPLE NUMBER:

134708

SAMPLE LOCATION:

DC-E1

	RESULTS (μg/L)		DET	ECTION LIMIT (μg/L)
t-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methylene Chloride 4-Methyl-2-pentanone Methyl tert-butyl ether Naphthalene n-propylbenzene Sec-butylbenzene Sec-butylbenzene Tetrachloroethene Toluene Trichloroethene Trichlorofluoromethane 1,1,2-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloropenane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene				0.95 5.0 0.19 10.0 5.0 10.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Vinyl Chloride Xylenes	ND ND			2.0 5.0
Surrogate Recoveries:	dibromofluoromethane 1,2-Dichloroethane	88% 106%	toluene-d8 BFB	89% 96%

ND = NOT DETECTED

Method Reference:

EPA Method

8260B (1) GC/MS

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1997, 3rd Edition.

BLANK

ND

05/25/03

VOLATILE ORGANICS LCS

		ORGANICS LCS	<u> </u>			
%RECOVERY						
Dichlorodifluoromethane	77%	1,1,2-Trichloroethane	106%			
Chloromethane	75%	Tetrachloroethene	99%			
Vinyl chloride	78%	1,3-Dichloropropane	106%			
Bromomethane	104%	Dibromochloromethane	102%			
Chloroethane	117%	EDB	108%			
Trichlorofluoromethane	90%	Chlorobenzene	102%			
Acrolein	107%	1,1,1,2-tetrachloroethane	97%			
1,1-Dichloroethene	86%	Ethylbenzene	110%			
Acetone	114%	m,p-Xylene	118%			
Carbon Disulfide	85%	o-Xylene	106%			
Methylene chloride	101%	Styrene	104%			
Acrylonitrile	105%	Bromoform	109%			
trans-1,2-Dichloroethene	87%	Isopropylbenzene	114%			
MTBE	98%	Bromobenzene	99%			
1,1-Dichloroethane	90%	1,1,2,2-Tetrachloroethane	114%			
Vinyl Acetate	102%	1,2,3-Trichloropropane	115%			
2-Butanone	107%	N-propylbenzene	11 9 %			
Carbon tetrachloride	86%	2-Chiorotoluene	107%			
2,2-Dichloropropane	88%	4-Chlorotoluene	106%			
c-1,2-dichloroethene	92%	1,3,5-Trimethylbenzene	112%			
Bromochloromethane	97%	tert-Butylbenzene	107%			
Chloroform	91%	1,2,4-Trimethylbenzene	115%			
1,1,1-Trichloroethane	86%	sec-Butylbenzene	119%			
1,1-dihloropropene	97%	1,3-Dichlorobenzene	105%			
Benzene	96%	1,4-Dichlorobenzene	105%			
1,2-Dichloroethane	94%	p-Isopropyltoluene	115%			
Trichloroethene	95%	1,2-Dichlorobenzene	109%			
1,2-Dichloropropane	97%	N-Butylbenzene	119%			
Dibromomethane	99%	1,2-dibromo-3-chloropropane	130%			
Bromodichloromethane	94%	1,2,4-trichlorobenzene	165%			
2-Chloroethylvinyl Ether	76%	Hexachlorobutadiene	142%			
c-1,3-Dichloropropene	93%	Naphthalene	180%			
Toluene	104%	1,2,3-Trichlorobenzene	192%			
t-1,3-Dichioropropene	102%					

MCP Limits 70%-130%

CLIENT NAME:

DECOULOS & COMPANY

PROJECT ID:

131 MAIN STREET

SAMPLE TYPE:

GROUNDWATER

REPORT DATE: ANALYZED BY:

06/04/03 QS/GS

COLLECTION DATE: REC'D BY LAB:

05/21/03 05/23/03 CLIENT

EXTRACTION DATE: N/A

COLLECTED BY: PRESERVATIVE:

NITRIC ACID

DIGESTION DATE:

SEE BELOW

DISSOLVED RCRAMETALS

SAMPLE NUMBER:

134710 **DCMWA**

SAMPLE LOCATION:

	RESULTS (mg/L)	DETECTION LIMIT (mg/L)	DIGESTION DATE	ANALYSIS DATE
ARSENIC	ND	0.05	05/28/03	05/28/03
BARIUM	0.393	0.03	05/28/03	05/28/03
CADMIUM	ND	0.005	05/28/03	05/28/03
CHROMIUM	ND	0.05	05/28/03	05/28/03
LEAD	ND	0.010	05/28/03	05/28/03
MERCURY	ND	0.001	05/23/03	05/23/03
SELENIUM	ND	0.05	05/28/03	05/28/03
SILVER	ND	0.007	05/28/03	05/30/03

ND = NOT DETECTED

Method Reference:

EPA Method

3005A (1) Metal Preparation

EPA Method

6010B (1) Inductively Coupled Plasma

EPA Method

245.1 (2) Manual Cold Vapor (Mercury)

¹⁾ U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1997, 3rd Edition.

²⁾ U.S. EPA 1994. "Methods for the Determination of Metals in Environmental Samples", Supplement I-EPA/600/R-94-111-May 1994.

METALS QC

		Spike				
	Blank	% Rec.	Limits	MS	Limits	MSD
Arsenic	ND	103%	80-120%	105%	75-125%	103%
		is a section of the s		A STATE OF THE STA		gan Landaga (h.)
Barium	ND	97%	80-120%	97%	75-125%	98%
	Y2 =	A STATE OF THE STA				Same Say 9
Cadmium	ND	105%	80-120%	103%	75-125%	105%
						36.
Chromium	ND	102%	80-120%	100%	75-125%	99%
Lead	ND	103%	80-120%	100%	75-125%	99%
	S WORK					
Mercury	ND	≫ 91%	80-120%	103%	75-125%	100%
	بالمختلف معاملات					
Selenium	ND.	108%	80-120%	92%	75-125%	92%
Silver	ND	96%	80-120%	-102%	75-125%	102%

GEOLABS, INC. 45 JOHNSON LANE BRAINTREE, MA 02184 M-MA015

LIMITATIONS & EXCLUSIONS

All the professional opinions presented in this report are based solely on the scope of work conducted and sources referred to in our report. The data presented by GeoLabs in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations and materials that were observed at the time the work was conducted. No inferences regarding other conditions, locations or materials, at a later or earlier time may be made based on the contents of the report. No other warranty, express or implied is made.

This report was prepared for the sole use of our client. Portions of the report may not be used independent of the entire report.

All analyses were performed within required holding times, in accordance with EPA protocols and using accepted QA/QC procedures. All QA/QC meets acceptable limits unless otherwise noted. The information contained in this report is, to the best of my knowledge, accurate and complete.

Any and all subsequent pages of this report are chain(s) of custody.

	Ţ						- ,	(E)			_ ∢	m el			2	٨	À				7		4.18	2×5			
		3		13				5		-	BAUTA	REMPER	₹	1	7-2	3.4	3.4	2			7		5- Paterlyng:				
		35	Λ	4	1	Ţ		ال ال															Pa	5/14/3	ps:		
o to		S)	3	200	DAC!			২	STE														31	2/2	eoLa		إ≾
		3	3	2	70	1 N		۱۸	EGU														<u>*</u>	3.	By: G	1	SIC
Page		121	1/2	130	///	7.7	, 	3	ES R		. 8	70978						X	Х				yed !	Received By:	Received By: GeoLabs:		포 [
Page / of /	5	Ž	-	X	KON	(A)		7	ANALYSES REQUESTED	(1	19W/8	pros								-	Ž		Received By:	Rece	Rece		⊃ Z
100	֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	DLS MUST 35 BELLD	MCP 6W-1 SIAMDARDS	NERS" PLAK AREA BEOOKS	7	AL 70 0/5055		ENAIL 108501175	A		,	EDB		ړ			\mathfrak{G}	X	X		Ī			W. 2			GEOLABS CHAIN OF CUSTODY
		Δ,	Ġ	3	Q	• `	-	もつ				HUN	V	,î X				<u>√</u>	χ̈́	ار ک	Z		Date/Time			9	BS
$\left\{ \ \right\}$		Arc	AC	13	7) 		E.				HUF	V	X	X	×ί	メ	7	X	Ž	X		123/	7,		Ş	
\vdash		<u> </u>				Ì									<u>ر</u> ا	١.	. 0		-		3	\dashv	By:	Helinquished By:5	<u>`</u>	Ī	3
, ča	<u> </u>										GEOLABS	SAMPLE NUMBER	4702	42.3	205	206	34706	4767	34708	4709	24710	9	Mindellished By:	shed	Relinquished By:		
me STANDARD	S Day	$\frac{1}{8}$	Š.								GEOI	SAN	19	<u>.</u> 5	<u>۲</u>	ን¢ን	× %	7	36	34	721]		Indui	indui		
ime S74		Rush	5		12.										·~							_		E	e e		_
nd T		B. 4	₹		V/D/V	3		2		<u> </u>		т ν				. (~ i	_ /	.	. 1	メ		DES				ļ
arou L	Τ	\Box		9/9	(3(Sim					×	<u>×</u>	<u> </u>	×	×	4	×	メ		\dashv	/E CODE 7 = ICE	•			
Turnaround Time	24nrs 48hrs	<u>ال</u> ا الإ		ن ا	1 -1	. 🔾		1,			5 4+		7	3	3	7	1	7	7	7	7		PRESERVATIVE CODES: 1 = HCI 7 = ICE	చి రే	Na ₂ S ₂ O ₃	¥ 7	Ę
	24nrs 48hrs	72hrs	9	K www. Project Number:	Project Location:			Purchase Order #: Collected By:		<u>æ</u>			5	65	55	2	द्र	કુ	ડ	ઝુ	જ	_	ESER!	HNO ₃		NaOH MaOH	
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	:	2.29	(3)	Z to	oct L			Purchase Ord Collected By:		CONTAINER	٥٦	∢z⊢	M	12]		_	<u>√</u>	'n	5	0	_	PRE 1	 0 0		in i	
178	ม	1 20.5dy	-15-	Ball & Project	Pro	:	1	<u>8</u> 8		NO CO	- ;	- Ф Ш	ž }	1/	4	4	4	\$	3	4/7	3		ater	sr /ater		r Har	2
	<u> </u>	٥	2.00. V	April 1					7			., <u>Z</u>		_									(CODES: Ground Water	Wastewater Drinking Water	ှိဆု	A = Air $OT = Other$	[]
3	있 고	5 [§]	1 2			7			100			SAMPLE				j					ĺ	ŀ	20 025 025	Wast	Sludge		
1	TOSE A	With Fig.			7,	610	M	7 ~	5		(K O											MATRIX CODES: GW = Ground M	11 (1	fi :	ii Soii	5 [
toris	5 K	02184 Will	7811	3	3	14	1989-1795	2600/03	3	_	1	n >-	\vdash								\dashv	\dashv	MAT GW	<u> </u>	S	က C	긱
por		84	781-848-7811	t 50	7000	1 1	7		9	STION	σ∢Σ	なし回り	050	_	N	32	اغــ	(Ş)	ત્ર	a	~	_	έÿ			_	
Inc.	45 Johnson Laneth LIC!	Braintree, MA 02184	781	DECOUDS + CO	ELEGINANUS AC	DANKIS	17-489-	0 7	I.N	COLLECTION	-	- ≥ W	1530	16 to	1019	163	4.2	165	173	१ %	2015	\dashv	CONTAINER CODES: A = Amber			Summa Canister	\$
GeoLabs, Inc.	45 Johnson Lane	e, M/		356	W	140	30		月	ၓ		<u>``</u>	12/5				_	_	_				ER C	Ø	<u>:</u>	Summa Caniste	 - -
oLa	John	Braintre Office:	دو	Client:	Address:		Phone:	Contact:	E-mail:		i G		BP. 2	Ń	Y	3	-5	7	72-	AF	DCMWA		ITAINE Amber	Bag Glass	Plastic	Sum	
	, - 7	(C) 1	Tax ::	<u>a</u>	<u> </u>	- 1	Pho S	3 5	Ě			₹	ا درا	0,	L V	با	ပွဲ	. 1	8	8	5	- 1	§ #	H H	1[11 1	π

π Φ 5=

GeoLabs, Inc.

Environmental Laboratories

LABORATORY REPORT

PREPARED FOR:

Decoulos & Company 3 Electronics Avenue Danvers, MA 01923

Attn: Jim Decoulos

PROJECT ID:

616

131 Main Street

Carver

GEOLABS CERTIFICATION #:

M-MA015

SAMPLE NUMBER:

135239 - 135247

DATE PREPARED:

June 17, 2003

PREPARED BY:

Christine Johnson

APPROVED BY:

Jim Chen, Laboratory Director/Date

Location: 45 Johnson Lane

Braintree, MA 02184

Phone: (781) 848-7844

1 of 18 Fax: (781) 848-7811

Exhibit VII A-1 MCP Response Action Analytical Report Certification Form

Analytical Report Certification Form

Laboratory Name: GeoLabs, Inc.	
Laboratory Project #: 135239 - 135247	
MCP Site Name: 616	
MCP RTN #:	
MCP SW-846 8260B (x) 7470/1 () 8082 ()	VPH(x) Other:
Methods 8270C () 8081A () 7000 ()	EPH(x) Other:
IN CALCO AND THE STATE OF THE S	Yes ⊠ No □
Were all QA/QC procedures required for the specified analytical method(s) included in this report followed?	Yes ⊠ No □ (if No must address in narrative.
analytica: method(s) included in this report followed:	Attach additional information if
	required)
Were all QA/QC performance standards for specified	Yes □ No ☒
analytical method(s) included in this report met (including	(if No must address in narrative.
those not required to be reported)?	Attach additional information if
_	required)
NAC 21 1 22 1 1 12 1 1 1 1 1 1 1 1 1 1 1 1	Vec t 🖾 - Ne 🗖
Were all contaminants identified and quantified by the laboratory in the course of this analysis of field samples,	Yes * ⊠ No □ (if No must address in narrative.
by comparison to a calibration standard, even if not a	Attach additional information if
requested analyte, reported by the laboratory to the person	required)
that requested the analysis?	*If Yes , reported in:
	☑ Analytical Report □ Case Narrative
	Li Case Ivaliative
Were all samples received by laboratory in a condition	Yes ⊠ No 🗓
consistent with those described on their Chain-of-Custody	(if No must address in narrative.
documentation?	Attach additional information if
	required)
I, the undersigned, attest under the pains and penalties of pe	
of those responsible for obtaining the information, the materia	al contained in this analytical report is, to the
best of my knowledge and belief, accurate and complete.	
Signature:	Position: Lab Director
Printed Name: Jim Chen	Date: June 17, 2003

GeoLabs, Inc.

Environmental Laboratories

CASE NARRATIVE

Project ID: 616 Sample Number: 135239 - 135247

Client Name: Decoulos & Company Received: 6/9/03

Physical Condition of Samples

This project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

This project was accompanied by satisfactory Chain of Custody documentation. The sample container label(s) agreed with the Chain of Custody.

Analysis of Sample(s)

The following analytical anomalies or non-conformances were noted by the laboratory during the processing of these sample(s):

1. Samples 135241 abd 135243 do not pass Surrogate recoveries, matrix interference confirmed

CLIENT NAME:

DECOULOS & COMPANY

SAMPLE TYPE: COLLECTION DATE: 06/02/03

GROUNDWATER

REC'D BY LAB:

06/09/03 CLIENT

COLLECTED BY: PRESERVATIVE:

HYDROCHLORIC ACID

PROJECT ID:

131 MAIN STREET

REPORT DATE: ANALYZED BY:

06/17/03 ZYZ 06/09/03

EXTRACTION DATE: N/A DIGESTION DATE:

N/A

VOLATILE ORGANICS

SAMPLE NUMBER: **SAMPLE LOCATION:** 135239 DC-G1

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Acetone	ND	50.0
Acrylonitrile	ND	50.0
Benzene	ND	5.0
Bromobenzene	ND	5.0
Bromochioromethane	ND	~ 2.0
Bromoform	ND	5.0
Bromomethane	ND	2.8
2-Butanone	ND	10.0
n-Butylbenzene	ND	5.0
Carbon Tetrachloride	ND	5.0
Chlorobenzene	ND	5.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	5.0
Chloromethane	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
Dibromomethane	ND	5.0
Dibromochloromethane	ND	5.0
Dichlorobromomethane	ND	5.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	5.0
1,1-Dichloroethene	ND	0.96
1,1-Dichloropropene	ND	0.4
1,2-Dibromoethane	ND	0.63
1,2-Dibromo-3-chloropropane	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dichloroethane	ND	5.0
1,2-Dichloropropane	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,3-Dichloropropane	ND	5.0
1,4-Dichlorobenzene	ND	5.0
2,2-Dichloropropane	ND	5.0
c-1,2-Dichloroethene	ND	5.0
c-1,3-Dichloropropene	ND	0.65
t-1,2-Dichloroethene	ND	5.0

CLIENT NAME:

DECOULOS & COMPANY

PROJECT ID:

131 MAIN STREET

SAMPLE TYPE:

GROUNDWATER

REPORT DATE:

06/17/03

REC'D BY LAB:

COLLECTION DATE: 06/02/03

ANALYZED BY:

ZYZ 06/09/03

06/09/03

EXTRACTION DATE:

N/A

COLLECTED BY:

CLIENT

DIGESTION DATE:

N/A

PRESERVATIVE:

HYDROCHLORIC ACID

VOLATILE ORGANICS

SAMPLE NUMBER:

135239

SAMPLE LOCATION:

DC-G1

	RESULTS (μg/L)		DE	TECTION LIMIT (μg/L)
t-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methylene Chloride 4-Methyl-2-pentanone Methyl tert-butyl ether Naphthalene n-propylbenzene Sec-butylbenzene Sec-butylbenzene Styrene tert-butylbenzene Trichloroethene Trichloroethene Trichlorofluoromethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trichloropropane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	(#) 2000000000000000000000000000000000000			(μ g/L) 0.95 5.0 0.19 10.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Chloride Xylenes	ND ND ND ND			5.0 5.0 5.0 2.0 5.0
Surrogate Recoveries:	dibromofluoromethane 1,2-Dichloroethane	93% 102%	toluene-d8 BFB	96% 107%

ND = NOT DETECTED Method Reference:

EPA Method

8260B (1)

GC/MS

¹⁾ U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1997, 3rd Edition.

BLANK

ND

06/09/03

VOLATILE ORGANICS LCS

		ORGANICS LCS	
	%RE	COVERY	
Dichlorodifluoromethane	89%	1,1,2-Trichloroethane	102%
Chloromethane	87%	Tetrachloroethene	110%
Vinyl chloride	92%	1,3-Dichloropropane	103%
Bromomethane	114%	Dibromochloromethane	106%
Chloroethane	104%	EDB	106%
Trichlorofluoromethane	95%	Chlorobenzene	112%
Acrolein	104%	1,1,1,2-tetrachloroethane	105%
1,1-Dichloroethene	103%	Ethylbenzene	113%
Acetone	92%	m,p-Xylene	120%
Carbon Disulfide	101%	o-Xylene	115%
Methylene chloride	115%	Styrene	117%
Acrylonitrile	97%	Bromoform	105%
trans-1,2-Dichloroethene	102%	Isopropylbenzene	118%
MTBE	99%	Bromobenzene	113%
1,1-Dichloroethane	97%	1,1,2,2-Tetrachloroethane	101%
Vinyl Acetate	96%	1,2,3-Trichioropropane	104%
2-Butanone	85%	N-propylbenzene	124%
Carbon tetrachloride	110%	2-Chlorotoluene	117%
2,2-Dichloropropane	114%	4-Chlorotoluene	119%
c-1,2-dichloroethene	104%	1,3,5-Trimethylbenzene	118%
Bromochloromethane	97%	tert-Butylbenzene	108%
Chloroform	103%	1,2,4-Trimethylbenzene	118%
1,1,1-Trichloroethane	104%	sec-Butylbenzene	118%
1,1-dihloropropene	105%	1,3-Dichlorobenzene	114%
Benzene	91%	1,4-Dichlorobenzene	102%
1,2-Dichloroethane	104%	p-Isopropyltoluene	117%
Trichloroethene	102%	1,2-Dichlorobenzene	110%
1,2-Dichloropropane	102%	N-Butylbenzene	115%
Dibromomethane	101%	1,2-dibromo-3-chloropropane	98%
Bromodichloromethane	104%	1,2,4-trichlorobenzene	117%
2-Chloroethylvinyl Ether	151%	Hexachlorobutadiene	124%
c-1,3-Dichloropropene	106%	Naphthalene	117%
Toluene	105%	1,2,3-Trichlorobenzene	116%
t-1,3-Dichloropropene	101%		

MCP Limits 70%-130%

SAMPLE INFORMATION

Matrix	☑ Aque	eous 🗆 S	Soil 🏻 Sedin		Other			
Containers		Satisfactory	☐ Broken					
I I	Aqueous			pH > 2 Com				
1	Soil or			OT preserved			ners	ml MeOH
Preservatives	Sediment		s received in		Covering soil	? □ Not		□1:1 <u>+</u> 25%
		•	ed in air tight o		= •			☐ Other
Temperature		Received on ic	<u>.e □ R</u> €	eceived at 4° (,			
	YTICAL RES		1		Client ID:			
	langes: MADI				Lab ID:	135239		<u> </u>
1	arget Analytes		₽H		e Collected:	06/02/03	<u> </u>	
VPH Surroga			I	Dat	e Received:	06/09/03		
		bromotoluen			te Analyzed:	06/10/03		
	FID (2,5-Dib	promotoluen	e)	Diju	ution Factor:	1.0		
				Tota	l solids (%):	N/A		
Range/Targe	et Analyte		Elut. Range	RL	Units			
	C5-C8 Alipha		N/A	40	ug/L	ND ND		
Unadjusted	C9-C12 Aliph	natics ¹	N/A	15	ug/L	ND		
Methyl tert-b			C ₅ -C ₈ Aliph.	5	ug/L	ND		
Benzene			C ₅ -C ₈ Aliph.	5	ug/L	ND		
Toluene			C ₅ -C ₈ Aliph.	5	ug/L	ND		
Ethylbenzen	ie		C ₉ -C ₁₂ Aliph.	5	ug/L	ND		
m&p-Xylene			C ₉ -C ₁₂ Aliph.	5	ug/L	ND		
o-Xylene			C ₉ -C ₁₂ Aliph.	5	ug/L	ND		
Naphthalene			N/A	20	ug/L	ND		
C5-C8 Alipha	atic Hydrocai	rbons ^{1,2}	N/A	40	ug/L	ND		
C9-C12 Aliph	natic Hydroca	arbons ^{1,3}	N/A	15	ug/L	ND		
C9-C10 Aron	natic Hydroc	arbons'	C ₉ -C ₁₂ Aliph.	55	ug/L	ND		
2,5-Dibromo	toluene (PIE) Surrogate				× 112%		
2,5-Dibromo						107%	····	
Surrogate A						70-130%	· · ·	
			tions of any sur	rogate(s) and/o	r internal standa		hat range	
² C ₅ -C ₈ Aliphatic	Hydrocarbons	exclude the co	ncentration of T	Target Analytes	eluting in that	range		
3C9-C12 Aliphatic	c Hydrocarbons	s exclude conc	of Target Analy	tes eluting in th	at range AND o	concentration of	f C ₉ -C ₁₀ Aromat	ic Hydrocarbor
CERTIFICAT								
Were all QA	/QC procedu	ires REQUII	RED by the \	√PH Method	followed?	▼ Yes □	No - Details	s attached
Were all QA	/QC perform	ance /accep	stance stand	ards achieve	ed?⊠ Ye	s □ No-1	Details attac	hed
Were any sig	gnificant mod	difications m	ade to the V	/PH method,	as specified	f in Sect 11.	3.? ⊠ No	
l attest under	r the pains a	und penalties	s of perjury tl	hat, based uj	pon my inqui	iry of those i	individuals	

POSITION: Lab Director

06/17/03

DATE:

immedately responsible for obtaining the information, the material contained in this report is, to

the best of my knowledge, accurate and complete.

PRINTED NAME: Jim Chen

SIGNATURE: AND A STATE OF STAT

Matrix:	Water	μ g/L	LCS %	Limit	BLANK	
MTBE			97%	70-130%	ND	
Benzene			99%	70-130%	ND	
Toluene			120%	70-130%	NĐ	
Ethyl Ben:	zene		117%	70-130%	ND	
m,p-xylen	е		130%	70-130%	ND	
o-xylene			125%	70-130%	ND	
Naphthale	ene		108%	70-130%	ND	
Surrogate	e Recoveries:			•		
2,5-Dibror	motoluene (PIE))	106%			
2,5-Dibror	notoluene (FID))	101%			

SAMPLE INFORMATION

SAMPLE IN CRMATI							
		Soil □ Sedin		Other			
			Leaking				
Aqueous			I pH > 2 Com				
Sample Soil or				in MeOH or ai		ners	ml MeOH
Preservative Sediment		es received in		■ Covering so	oil? 🗆 Not		⊠1:1 <u>+</u> 25%
Tarrana W Door		ed in air tight o					☐ Other
Temperature 🗷 Rece	eived on ice	☐ Keceiv	/ed at 4 C L	☐ Other	·····		
VPH ANALYTICAL RE	-0111 TC		т	O" 4 ID-	· ·	Tara	T_ , _
,					DC-SBZ	DC-SDZ	DS-5≅2
Method for Ranges: MAD			<u> </u>	Lab ID:	135241	135242	135243
Method for Target Analyte		PH ·		te Collected:	06/02/03	06/02/03	06/02/03
VPH Surrogate Standards		J		te Received:	06/09/03	06/09/03	06/09/03
, .	ibromotoluen	,		te Analyzed:	06/10/03	06/10/03	06/10/03
FID (2,5-Di	ibromotoluen	ιe)		ution Factor:	1.00	1.00	1.00
				al solids (%):	84	79	84
Range/Target Analyte		Elut. Range	RL	Units			-
Unadjusted C5-C8 Alip		N/A	6.50	mg/Kg	93.9	59.9	188
Unadjusted C9-C12 Ali		N/A	6.50	mg/Kg	123	ND	367
Methyl tert-butyl ether	•	C ₅ -C ₈ Aliph.	0.50	mg/Kg	0.524	ND	4.93
Benzene		C ₅ -C ₈ Aliph.	0.50	mg/Kg	ND	ND	1.42
Toluene		C ₅ -C ₈ Aliph.	0.50	mg/Kg	3.86	ND	15.0
Ethylbenzene		C ₉ -C ₁₂ Aliph.	0.50	mg/Kg	9.61	ND	29.7
m&p-Xylenes		C ₉ -C ₁₂ Aliph.	0.50	_mg/Kg	20.2	ND	80.8
o-Xylene		C ₉ -C ₁₂ Aliph.	0.50	mg/Kg	11.0	ND	40.2
Naphthalene		N/A	1.00	mg/Kg	18.9	ND	62.8
C5-C8 Aliphatic Hydro		N/A	6.50	mg/Kg	89.5	59.9	167
C9-C12 Aliphatic Hydro	ocarbons ^{1,3}	N/A	6.50	mg/Kg	81.8	ND	216
C9-C10 Aromatic Hydro	carbons'	C ₉ -C ₁₂ Aliph.	1.50	mg/Kg	ND	ND	ND
2,5-Dibromotoluene (PI	(D) Surrogate		ļ 		116%	97%	107%
2,5-Dibromotoluene (FII			· '		97%	93%	89%
Surrogate Acceptance I		1	·· -	 	70-130%	70-130%	70-130%
Hydrocarbon Range data exc		tions of any sur	rrogate(s) and/c	or internal stand			
² C ₅ -C ₈ Aliphatic Hydrocarbon						mac rang.	
C ₉ -C ₁₂ Aliphatic Hydrocarbor	ns exclude conc	of Target Analy	reseluting in th	nat range AND c	range rancentration of	fCC Aromat	in Hudrocarbor
9 - 12 · P	TO DATE OF THE PARTY OF THE PAR	or raiger.	100 0.0	at langer in the	Onocia addi. J.	09-010 / 10	ic i iyarooa.bo.
CERTIFICATION	·						
Were all QA/QC proced	Jures REQUI	RED by the \	√PH Method	I followed?	☑ Yes 🗆	No - Detail	s attached
Were all QA/QC perform	mance /accep	ptance stand	iards achieve	ed? 🗵 Ye	s □ No-i	Details attac	hed
Were any significant mo	odifications m	nade to the V	/PH method	as specified	in Sect 11.	3.? ⊠ No	• • • •
-				- •	•	-	

Were all QA/QC procedures REQUIRED by the VPH Metho	nd followed? [V] Voc. No. Details attached
What all ONICC performance (acceptance standards action	ad followed? More Tes Linko - Details attached
Were all QA/QC performance /acceptance standards achiev	ved? 🗵 Yes 🗆 No - Details attached
Were any significant modifications made to the VPH method	d, as specified in Sect 11.3.? 区 No
I attest under the pains and penalties of perjury that, based immedately responsible for obtaining the information, the mathe best of my knowledge, accurate and complete.	upon my inquiry of those individuals aterial contained in this report is, to
SIGNATURE:	POSITION: Lab Director
PRINTED NAME: Jim Chen	DATE: 06/17/03
\mathcal{G}	

SAMPLE INFORMATION

PRINTED NAME: Jim Chen

	- 1 00 c	· · · · · · · · · · · · · · · · · · ·		Aa					
Matrix ☐ Aqueous Soil ☐ Sediment ☐ Other Containers Satisfactory ☐ Broken ☐ Leaking									
Containers		Broken □ □ □ pH < 2 □		manti					
				iment: in MeOH or air	is tight contain	nore	ml MeOH		
Sample S Preservative S		as received in t		Covering so		1612	■1:1 <u>+</u> 25%		
Preservativo		ed in air tight o		☐ Other					
Temperature I			ved at 4°C E	☐ Other					
1 Oinpara					<u></u>				
VPH ANALY	TICAL RESULTS			Client ID:	DC-SG2	DC-SH2			
	anges: MADEP VPH	1		Lab ID:	135244	135245			
	arget Analytes: MADEP V	/PH	Dat	te Collected:	06/02/03	06/02/03			
VPH Surrogate	•			te Received:	06/09/03	06/09/03			
	PID (2,5-Dibromotoluen	ne)		te Analyzed:	06/10/03	06/10/03			
	FID (2,5-Dibromotoluen	•	$\overline{}$	ution Factor:	1.00	1.00			
	·- (=,= = : : :	,		al solids (%):	81	83			
Range/Targe	et Analyte	Elut. Range	RL	Units					
	C5-C8 Aliphatics	N/A	6.50	mg/Kg	64.3	52.5			
	C9-C12 Aliphatics	N/A	6.50	mg/Kg	ND	ND	<u> </u>		
Methyl tert-bu	<u> </u>	C ₅ -C ₈ Aliph.	0.50	mg/Kg	ND	ND			
Benzene		C ₅ -C ₈ Aliph.	0.50	mg/Kg	ND	ND			
Toluene	-	C ₅ -C ₈ Aliph.	0.50	mg/Kg	ND	ND			
Ethylbenzene	e	C ₉ -C ₁₂ Aliph.	0.50	mg/Kg	ND	ND			
m&p-Xylenes		C ₉ -C ₁₂ Aliph.	0.50	mg/Kg	ND	ND			
o-Xylene	<u> </u>	C ₉ -C ₁₂ Aliph.	0.50	mg/Kg	ND	ND			
Naphthalene	,	N/A	1.00	mg/Kg	ND	ND			
C5-C8 Alipha	atic Hydrocarbons ^{1,2}	N/A	6.50	mg/Kg	64.3	52.5			
C9-C12 Alipha	iatic Hydrocarbons ^{1,3}	N/A	6.50	mg/Kg	ND	ND			
	natic Hydrocarbons	C ₉ -C ₁₂ Aliph.	1.50	mg/Kg	ND	ND			
	toluene (PID) Surrogate				100%	99%			
2,5-Dibromot	toluene (FID) Surrogate				95%	95%			
Surrogate Ac	cceptance Range				70-130%	70-130%			
	ange data exclude concentra					that range			
² C ₅ -C ₈ Aliphatic I	Hydrocarbons exclude the o	concentration of	Target Analytes	s eluting in that r	range				
³ C ₉ -C ₁₂ Aliphatic	c Hydrocarbons exclude conc	of Target Analy	ytes eluting in th	iat range AND c	concentration of	C9-C10 Aromat	iic Hydrocarbon		
CERTIFICAT									
	QC procedures REQUI								
	/QC performance /acce								
Were any sig	gnificant modifications o	nade to the \	/PH method	, as specified	d in Sect 11.	3.? ⊠ No			
	r the pains and penaltie								
	responsible for obtainin			terial contain	ed in this re	port is, to			
the best of m	ny knowledge, accurate	and complet	t e .						
	general and the second								
SIG	SNATURE:	2 1 A	200	,	POSITION:	Lab Director	r		
İ									

DATE: 06/17/03

SAMPLE INFORMATION

SAMPLE INFORMAT						
Matrix	<u> </u>	oil 🗆 Sedir		Other		
Containers		Broken 🛚 🗎				
Aqueous Preservative		□ pH > 2 Cc				
Temperature	Received on ice	☐ Rece	eived at 4° C	☐ Other		
Extraction Method	Water:		Soil: Soxhle	t		
FULL EPH ANALYTIC	AL DESILITS					
Method for Ranges: MA		1	Client ID:	DC-SA2	1	
Method for Target Analy		 	Lab ID:			<u> </u>
EPH Surrogate Standard		Dat	e Collected:		-	
Aliphatic COD			e Received:			
Aromatic OTP			e Extracted:	06/10/03	·	
			ions Analyzed:	06/13/03		<u>. </u>
EPH Fractionation Surro	gates:	4	gets Analyzed:	06/11/03		
2-Fluorobiphenyl	-	Dilu	ition Factor:		<u> </u> 	
2-Bromonaphthalene			solids (%):	81		
Range/Target Analyte		RL	Units	·	Dilution	
Unadjusted C11-C22		50.0	mg/Kg	1630	5	- -
	Naphthalene	0.050	mg/Kg	2.13	1	
Diesel PAH	2-Methylnaphthalene	0.050	mg/Kg	9.46	1	
Analytes	Acenaphthene	0.100	mg/Kg	0.284	1	
ļ ⁻	Phenanthrene	0.050	mg/Kg	2.17	1	
	Acenaphthylene	0.050	mg/Kg	ND	1	
	Fluorene	0.025	mg/Kg	1.27	1	
]	Anthracene	0.050	mg/Kg	ND .	1	
	Fluoranthene	0.200	mg/Kg	ND	1	
Other	Pyrene	0.200	mg/Kg	0.415	1	
Target PAH	Benz[a]Anthracene	0.100	mg/Kg	ND	1	
Analytes	Chrysene	0.100	mg/Kg	ND	1	
, , , , , , , , , , , , , , , , , , , ,	Benzo[b]Fluoranthene	0.150	mg/Kg	ND	1	
	Benzo[k]Fluoranthene	0.100	mg/Kg	ND ND	1	
	Benzo[a]Pyrene	0.100	mg/Kg	ND ND	1 -	
	Indeno[1,2,3-c,d]Pyrene	0.050	mg/Kg	ND ND	1	
	Dibenzo[a,h]Anthracene	0.100	mg/Kg	ND	1 1	
	Benzo[g,h,i]Perylene	0.100	mg/Kg	ND	1	
C9-C18 Aliphatic Hydi	ocarbons	100	mg/Kg	2680	10	<u> </u>
C19-C36 Aliphatic Hyd		50.0	mg/Kg	1080	5	 -
C11-C22 Aromatic Hyd		50.0	mg/Kg	1610	5	
Aliphatic Surrogate %		50.0		₹79%		
Aromatic Surrogate %	Recovery (OTP)			87%		
Sample Surrogate Acc	eptance Range			40-140%		-
2,2'-Difluorobiphenyl %				46%		
2-Fluorobiphenyl % Re				53%	-	_
Fractionation Surrogate				40-140%		_
Hydrocarbon Range data ex	clude concentrations of any sur	rogate(s) and/o	internal standa	rds eluting in #	pat range	
C ₁₁ .C ₂₂ Aromatic Hydrocarb	ons exclude concentrations of T	arget PAH Anal	v tes.	0 0.04119 11 0	ge	
CERTIFICATION		_ U=::::arrana	- 17.01	 ·		
	res REQUIRED by the EPH	Method follow	ed? 🗷 Yes	T No. De	tails attached	-
Were all performance/acc	ceptance standards acheived	d? ⊠ Yes	☐ No - Detai	ls attached	and anached	·
Were any significant mod	lifications made to the EPH r		No DY		attached	ĺ
l attest under the pains a	nd penalties of perjury that, t	ased upon m	y inauiry of th	ose individua	ls immediatel	,
responsible for obtaining belief, accurate and comp	the information, the material plete.	contained in	his report is, I	o the best of	my knowledg	e and
SIGNATURE	t Garage	A second	F	POSITION: I	Lab Director	
PRINTED NAME				DATE:	06/17/03	
	/ · ———					

	Environ	ımental Lab	oratories			
SAMPLE INFORMAT	ION					
Matrix	☐ Aqueous 图 S	Soil 🛘 Sedir	ment 🗆	Other	<u> </u>	
Containers		Broken □				
Aqueous Preservative		□ pH > 2 C	omment:			
Temperature	■ Received on ice	e □ Rece	eived at 4° C	☐ Other		
Extraction Method	Water:		Soil: Soxhle	et		-
FULL EPH ANALYTIC	CAL RESULTS					
Method for Ranges: MA		T	Client ID:	DC-SB2		
Method for Target Analyt	e: 8270 GC/MS		Lab ID:			
EPH Surrogate Standard	ls:	Dai	e Collected:	06/02/03	<u> </u>	
Aliphatic COD			te Received:	06/09/03		
Aromatic OTP			e Extracted:			
EDU Exaction of the Course	anton.		tions Analyzed:			
EPH Fractionation Surro 2-Fluorobiphenyl	gates:		gets Analyzed: ution Factor:			
2-Bromonaphthalene			al solids (%):	84	i <u></u>	
Range/Target Analyte		RL	Units		Dilution	
Unadjusted C11-C22		50.0	mg/Kg	3570	5	
	Naphthalene	0.050	mg/Kg	4.72	1	
Diesel PAH	2-Methylnaphthalene	0.050	mg/Kg	25.5	1	
Analytes	Acenaphthene	0.100	mg/Kg	0.717	1	-
	Phenanthrene	0.050	mg/Kg	6.24	1	
	Acenaphthylene	0.050	mg/Kg	0.210	1	
	Fluorene	0.025	mg/Kg	2.68	1	
	Anthracene	0.050	mg/Kg	2.32	1	·
A	Fluoranthene	0.200	mg/Kg	ND	1	
Other	Pyrene	0.200	mg/Kg	ND	1	
Target PAH	Benz[a]Anthracene	0.100	mg/Kg	ND	1	
Analytes	Chrysene	0.100	mg/Kg	ND	1	
	Benzo[b]Fluoranthene	0.150	mg/Kg	ND	1	
	Benzo[k]Fluoranthene Benzo[a]Pyrene	0.100	mg/Kg	ND	1	
	Indeno[1,2,3-c,d]Pyrene	0.050	mg/Kg	ND	1	
	Dibenzo[a,h]Anthracene	0.100	mg/Kg mg/Kg	ND ND	1	
	Benzolg,h,i]Perylene	0.100	mg/Kg	ND T	1	
C9-C18 Aliphatic Hydr		500	mg/Kg	7960	50	
C19-C36 Aliphatic Hyd		100	mg/Kg	2840	10	
C11-C22 Aromatic Hyd	rocarbons ^{1,2}	50.0	mg/Kg	3530	5	
Aliphatic Surrogate % I		·	<u> </u>	129%		
Aromatic Surrogate %				160%*		
Sample Surrogate Acc				40-140%		
2,2'-Difluorobiphenyl %			_	63%		
2-Fluorobiphenyl % Re				49%		
Fractionation Surrogate	Acceptance Range		i	40-140%		Ţ
C. C. Assmalia Huden	clude concentrations of any sur	rogate(s) and/o	r internal standa	ards eluting in th	nat range	
	ons exclude concentrations of T					
CERTIFICATION Were all OA/OC procedure	es REQUIRED by the EPH	erference co	ontirmed	 		
Nere all performance/acc	eptance standards acheived	Metrou jollow	eu: Les Yes	9U-0N LJ Podosteati	tails attached	'
Were any significant mod	ifications made to the EPH r	nethod??	No ☐ Y	es - Details a	ittached	ļ
esponsible for obtaining in Delief, accurate and comp	nd penalties of perjury that, it the information, the material lete.	contained in	y inquiry of th this report is, i	ose individual to the best of	ls immediatel my knowledg	y e and
SIGNATURE:		منابعتها وتحور	ŀ	POSITION: I	Lab Director	
PRINTED NAME:	Jim Chen			DATE:	06/17/03	

SAMPLE INFORMATION

SAMPLE INFORMATION	_						
Matrix	☐ Aqueous 図 Soit ☐ Sediment ☐ Other						
Containers	■ Satisfactory □ Broken □ Leaking						
Aqueous Preservative	■ N/A □ pH ≤ 2 □ pH > 2 Comment:						
Temperature	■ Received on ice □ Received at 4° C □ Other						
Extraction Method Water: Soil: Soxhlet							
FULL EPH ANALYTIC	AL RESULTS						
Method for Ranges: MAL		Client iD:	DC-SD2				
Method for Target Analyte: 8270 GC/MS			Lab ID:	135242			
EPH Surrogate Standards	5:	Date Collected:		06/02/03			
Aliphatic COD		Date Received:		06/09/03			
Aromatic OTP			e Extracted:	06/10/03			
		Date Fractions Analyzed:		06/13/03			
EPH Fractionation Surrog	ates:	Date Targets Analyzed:		06/13/03	ļ		
2-Fluorobiphenyi		Dilution Factor:		1.0		<u> </u>	
2-Bromonaphthalene		Total solids (%):		79			
Range/Target Analyte		RL 10.0	Units	40.0		 	
Unadjusted C11-C22 A		10.0	mg/Kg	18.8	-	 	
Diocal DAL	Naphthalene	0.050	mg/Kg	ND ND	-	 	
Diesel PAH	2-Methylnaphthalene	0.050	mg/Kg	ND ND	-	 	
Analytes	Aceлaphthene	0.100 0.050	mg/Kg	ND ND			
	Phenanthrene	0.050	mg/Kg	ND	-		
1	Acenaphthylene		mg/Kg	ND	1		
	Fluorene	0.025	mg/Kg	ND			
	Anthracene	0.050	mg/Kg	ND		ļ	
Other	Fluoranthene	0.200 0.200	mg/Kg	ND	-	 	
Target PAH	Pyrene	0.200	mg/Kg	ND ND	ļ	1	
Analytes	Benz[a]Anthracene	0.100	mg/Kg	ND			
Analytes	Chrysene Benzo[b]Fluoranthene	0.150	mg/Kg	ND			
	Benzo[k]Fluoranthene	0.100	mg/Kg mg/Kg	ND ND	 	 	
	Benzo[a]Pyrene	0.100	mg/Kg	OND OND	 	 	
•	indeno[1,2,3-c,d]Pyrene	0.050	mg/Kg	ND ND	 	 	
	Dibenzo[a,h]Anthracene	0.000		ND ND	-	 	
	Benzo[g,h,i]Perylene	0.100	mg/Kg mg/Kg	ND ND	 	 	
C9-C18 Aliphatic Hydro		10.0	mg/Kg	62.2		 	
	10.0						
C11-C22 Aromatic Hydrocarbons 1/2 10.0 mg/Kg 18.8 Aliphatic Surrogate % Recovery (COD) 84%					 -		
Aromatic Surrogate % F				94%	<u> </u>	+	
Sample Surrogate Acce			40-140%	<u> </u>			
2,2'-Difluorobiphenyl %			45%		 		
2-Fluorobiphenyl % Recovery 47%						 	
Fractionation Surrogate Acceptance Range 40-140%					-		
Tractionation Surrogate Acceptance Range 40-140%							
² C ₁₁₋ C ₂₂ Aromatic Hydrocarbons exclude concentrations of Target PAH Analytes.							
CERTIFICATION							
Were all QA/QC procedures REQUIRED by the EPH Method followed? Yes No - Details attached							
Were all performance/acceptance standards acheived? Yes □ No - Details attached Were any significant modifications made to the EPH method?? No □ Yes - Details attached							
I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and							
belief, accurate and complete.							
SIGNATURE: POSITION: Lab Director							
PRINTED NAME: Jim Chen DATE: 06/17/03							

GeoLabs, Inc.

Environmental Laboratories							
SAMPLE INFORMATI				Oth			
Matrix Containers	☐ Aqueous ☒ Soil ☐ Sediment ☐ Other ☒ Satisfactory ☐ Broken ☐ Leaking						
Aqueous Preservative	■ Satisfactory □ Broken □ Leaking ■ N/A □ pH < 2 □ pH > 2 Comment:						
Temperature	Received on ice □ Received at 4° C □ Other						
Extraction Method Water: Soil: Soxhlet							
Extraction Method	water.		Sun. Suxine	<u></u>			
FULL EPH ANALYTIC							
Method for Ranges: MAI			Client ID:] "		
Method for Target Analyte		_	Lab ID:				
EPH Surrogate Standard	s:		e Collected:		<u> </u>		
Aliphatic COD Aromatic OTP		Date Received: 06/09/03				ļ	
Aromatic OTP			Date Extracted: 06/10/03				
EPH Fractionation Surrog	ates:		Date Fractions Analyzed: 06/13/03 Date Targets Analyzed: 06/13/03				
2-Fluorobiphenyl	,utoo.	Date fai	Dilution Factor: See Dilution				
2-Bromonaphthalene			l solids (%):	84	<u></u>		
Range/Target Analyte		RL	Units		Dilution		
Unadjusted C11-C22		50.0	mg/Kg	3620	5		
	Naphthalene	0.050	mg/Kg	6.60	1		
Diesel PAH	2-Methylnaphthalene	0.050	mg/Kg	43.2	1		
Analytes	Acenaphthene	0.100	mg/Kg	1.27	1		
	Phenanthrene	0.050	mg/Kg	9.51	1		
	Acenaphthylene	0.050	mg/Kg	0.274	1		
	Fluorene	0.025	mg/Kg	ND	1		
	Anthracene	0.050	mg/Kg	0.910	1		
A.:	Fluoranthene	0.200	mg/Kg	ND	_ 1		
Other	Pyrene	0.200	mg/Kg	1.96	1		
Target PAH	Benz[a]Anthracene	0.100	mg/Kg	ND	1		
Analytes	Chrysene	0.100	mg/Kg	DN	1		
	Benzo[b]Fluoranthene	0.150	mg/Kg	ND	1	i	
	Benzo[k]Fluoranthene	0.100	mg/Kg	ND	1		
	Benzo[a]Pyrene	0.100	mg/Kg	ND	1		
	Indeno[1,2,3-c,d]Pyrene	0.050 0.100	mg/Kg	ND	1		
	Dibenzo[a,h]Anthracene Benzo[g,h,i]Perylene	0.100	mg/Kg	ND	1		
C9-C18 Aliphatic Hydro		500	mg/Kg	ND 40300			
C19-C36 Aliphatic Hydr	100	mg/Kg mg/Kg	10200 3740	50 10			
	C11-C22 Aromatic Hydrocarbons 1.2						
C11-C22 Aromatic Hydrocarbons 12 50.0 mg/Kg 3560 5 Aliphatic Surrogate % Recovery (COD)							
Aromatic Surrogate % Recovery (OTP)							
	Sample Surrogate Acceptance Range 40-140%						
2,2'-Difluorobipheny! % Recovery 52%							
2-Fluorobiphenyl % Recovery							
ractionation Surrogate Acceptance Range 40-140%						<u> </u>	
Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range							
	ons exclude concentrations of T		<u>, </u>				
CERTIFICATION	* Matrix inte	erference co	nfirmed				
Were all performance/acc Were any significant modi	es REQUIRED by the EPH eptance standards acheived fications made to the EPH r	d? □ Yes nethod?? [⊠ No-Deta ⊠ No □ Y	ils attached S 'es - Details a	ittached		
rattest under the pains an responsible for obtaining t belief, accurate and compi patricular to the standary of the standary o	<i>f</i>	contained in a	this report is, t	ose individua to the best of	is immediatelj my knowledg	v e and	
SIGNATURE: POSITION: Lab Director							

DATE: 06/17/03

PRINTED NAME: Jim Chen

Containers Aqueous Preservative emperature Extraction Method								
emperature	1 5 1/4 5 1/4 A	Broken ∐ l	☐ Aqueous ☑ Soil ☐ Sediment ☐ Other ☑ Satisfactory ☐ Broken ☐ Leaking					
	☑ N/A ☐ pH ≤ 2 ☐ pH > 2 Comment:							
	Received on ice	☐ Rece	eived at 4° C	☐ Other				
	Water: Soit: Soxhiet							
ULL EPH ANALYTIC	CAL DECIME							
Method for Ranges: MA			Client ID:	DC-SG2	T DC-SH2 T			
Method for Target Analy		<u> </u>	Lab ID:		135245			
PH Surrogate Standard		Date Collected: 06/02/03			06/02/03			
Aliphatic COD		Date Received: 06/09/03 06/09/03						
Aromatic OTP		Date Extracted: 06/10/03 06/10/03						
	i		ions Analyzed:	1	06/13/03			
PH Fractionation Surro	gates:		gets Analyzed:	_	06/13/03			
!-Fluorobipheny!	-	Dile	ition Factor:		1.0			
-Bromonaphthalene		Tota	l solids (%):		83			
Range/Target Analyt	e	RL	Units	1	<u> </u>			
Inadjusted C11-C22 /	Aromatics'	10.0	mg/Kg	ND	ND			
·	Naphthalene	0.050	mg/Kg	ND	ND			
Diesel PAH	2-Methylnaphthalene	0.050	mg/Kg	ND	ND			
nalytes	Acenaphthene	0.100	mg/Kg	ND	ND			
	Phenanthrene	0.050	mg/Kg	0.0642	ND			
	Acenaphthylene	0.050	mg/Kg	ND	ND			
	Fluorene	0.025	mg/Kg	ND	ND			
	Anthracene	0.050	mg/Kg	ND	ND			
•	Fluoranthene	0.200	mg/Kg	ND	ND			
Other	Pyrene	0.200	mg/Kg	ND	ND I			
arget PAH	Benz[a]Anthracene	0.100	mg/Kg	ND	ND			
inalytes	Chrysene	0.100	mg/Kg	ND	ND ND			
	Benzo[b]Fluoranthene	0.150	mg/Kg	ND	ND -			
	Benzo[k]Fluoranthene	0.100	mg/Kg	ND	ND			
	Benzo[a]Pyrene	0.100	mg/Kg	ND	ND			
	Indeno[1,2,3-c,d]Pyrene	0.050	mg/Kg	ND	ND			
	Dibenzo[a,h]Anthracene	0.100	mg/Kg	ND	ND			
	Benzo[g,h,i]Perylene	0.100	mg/Kg	ND	ND			
9-C18 Aliphatic Hydro	carbons	10.0	mg/Kg	ND	ND			
19-C36 Aliphatic Hyd	rocarbons T	10.0	mg/Kg	17.2	ND			
11-C22 Aromatic Hyd	rocarbons 1.2	10.0	mg/Kg	ND	ND			
liphatic Surrogate %				87%	88%			
romatic Surrogate %				107%	103%			
ample Surrogate Acc		1	-	40-140%	40-140%			
2,2'-Difluorobiphenyl % Recovery				·53%×	60%			
-Fluorobiphenyl % R∈			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	44%	44%			
ractionation Surrogat	e Acceptance Range		•	40-140%	40-140%			
lydrocarbon Range data e:	clude concentrations of any surr	ogate(s) and/o	internal stand	ards eluting in t	hat range			
11-C22 Aromatic Hydrocarb	ons exclude concentrations of Ta	arget PAH Anal	y tes.					
ERTIFICATION	•				·-			
ere all QA/QC procedu	res REQUIRED by the EPH Ne ceptance standards acheived	Method follow	ed? 🗷 Yes	□ No - De	etails attached			

Were all QA/QC procedures REQUIRED by the EPH Method followed?

Yes No - Details attached Were all performance/acceptance standards acheived?
Yes No - Details attached Were any significant modifications made to the EPH method??

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SIGNATURE:

POSITION: Lab Director PRINTED NAME: Jim Chen

DATE: 06/17/03

QC RESULTS

	SB	MDL (mg/Kg)	LCSS1	%		
*c9-c18 Aliphatics	4.86	10	54	40-140		
c19-c36 Aliphatics	2.32	10	98.9	40-140		
c11-c22 Aromatics	5.23	10_	63.7	40-140		
Surrogate % Recovery	<u>-</u>			:		
COD	68%		40-140	89%		
OTP	· 79%		40-140	97%		

EPH - QC Target Analyte EXTRACTABLE PETROLEUM HYDROCARBONS

QC RESULTS

	Spike %		Spike %	Limits	
	Blank	Recovery 1	Recovery 2	%	
Naphthalene	ND	43%	40%	40-140%	
Acenapthalene	ND_	63%	62%	40-140%	
Anthracene	ND	61%	60%	40-140%	
Pyrene	ND	86%	75%	40-140%	
Chrysene	ND	83%	82%	40-140%	

GEOLABS, INC. 45 JOHNSON LANE BRAINTREE, MA 02184 M-MA015

LIMITATIONS & EXCLUSIONS

All the professional opinions presented in this report are based solely on the scope of work conducted and sources referred to in our report. The data presented by GeoLabs in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations and materials that were observed at the time the work was conducted. No inferences regarding other conditions, locations or materials, at a later or earlier time may be made based on the contents of the report. No other warranty, express or implied is made.

This report was prepared for the sole use of our client. Portions of the report may not be used independent of the entire report.

All analyses were performed within required holding times, in accordance with EPA protocols and using accepted QA/QC procedures. All QA/QC meets acceptable limits unless otherwise noted. The information contained in this report is, to the best of my knowledge, accurate and complete.

Any and all subsequent pages of this report are chain(s) of custody.

### SAMPLE A TOTAL WATER CODES ### CONTAMER CODES ### CONTAMER CODES ### CONTAMER CODES ### CONTAMER CODES ### CONTAMER CODES ### CONTAMER CODES ### CONTAMER CODES ### CONTAMER CODES ### CONTAMER CODES ### CONTAMER CODES ### CONTAMER CODES ### CONTAMER CODES ### CONTAMER CODES ### CONTAMER CODES ### CONTAMER CODES ### CODES ### CONTAMER CODES ### CODES	GeoLabs. Inc.			F	5		i i							ĺ		
181-949-7814 781-949-7814 781-949-7814 781-949-7814 781-949-7814 781-949-7814 781-949-7814 781-949-7814 781-949-7814 781-949-7814 781-949-7814 781-949-7814 781-949-7814 781-9814-7814 781	Environmental Labora	tories	RUSH:	24bre			574	MAARD.			ľ	١	age /	ot		1
Table 3-384	45 Johnson Lane	•		ABhre	1			Jave Care			7	ECIAL	INSTR	힐	S	
Approved by: Appr	ee, MA	,		72hrs			T Table	(Says)	-	3	Ç	11	7 7 7	,		•
		7811				_	Approve	ed by:		7	\$ 12 E		4	\$ 4 S		e
S C L C C Trade C C C C C C C C C C C C C C C C C C	•	5+6	Droject Mu	4	\boldsymbol{v}	18				0	: 7	, 4	9	3		X
CANCEL CANCER CANCEL C	•	1 1	Project Lo	ation:	5	į.		1,0	_,	}			<u>-</u>		}	`
The collected By: The	~ -	7790			7	3			·	3	;	270	1			
Collected By: Track Coll	5	00,00								3	ა ŧ	Š S	Ž			
ANALYSES REQUES ANALYSES R		-76047	Purchase (Collected F	Order#3	F	1										
COLLECTION CONTAINER CONTAINER COLLECTION CONTAINER COLLECTION CONTAINER COLLECTION CONTAINER COLLECTION COLLECTI		5£00 005.00 M		÷		ار										
T A SAMPLE T O A C G P SAMPLE T O O O O O O O O O	COLLECTION	<u> </u>	CONTAINE						1		₹ _	- 12 - 12 - 12 - 12	2 -		<u>.</u>	
1 P SAMPLE	Ε		σ= -		ပ							50			_	.NBE
12 110 12 12 12 12 12 12	← Ε Μ	<u> </u>		⊢ œ – >	0 2 4	<u></u> < ₽		SAMPLE SAMPLE NUMBER	H03	<u> </u>	975	(2020)			.	TAR39M
12.5 12.5	0011 26		+	13		 x	127	7	?		}	4		\downarrow	\dashv	3T
13.0	,		- 48	\ \	>		7	13	>	(0	<	\dagger	-	+	-	
130	-582			-	₫.	+	1		$\langle \cdot \rangle$	\$ >			-	-	_	
1375			-	-		 	1,	ングング	\ >	<u> </u>				+	\downarrow	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	/330				-	-	1	ヘングン	√ ≻	√ ×		-	-	-		\perp
Particle Partic	00 A				-	-		メナインと	×	$\langle \cdot \rangle$		-	-	_		
The probability of the problem of t	•		7	>	7	-		2 52×5	\ \	$\langle $		-	+	-	\perp	
R CODES: MATRIX CODES: PRESERVATIVE CODES: Reinquished By: Government of the second Water 1 = HCl 7 = ICE WW = Wastewater 2 = HNO ₃ Pelinquished By: $C_1 = C_2 = C_3 $,				73	7	24			×	-	-	<u> </u>	I
MATRIX CODES: PRESERVATIVE CODES: Relinquished By: Pate/Time Received By: GW = Ground Water 1 = HCl 7 = ICE Prince of the control of the	7							14				X		-	_	
GW = Ground Water 1 = HCI 7 = ICE WW = Wastewater 2 = HNO ₃ Helinquished By: $A = A = A$ Helinquished By: $A = A$ Heceived By: $A = A$ Hereived By: $A = A$	ONTAINER CODES:	MATRIX CODES:	PRES	FRVAT			Ġ									
Glass Glass DW = Drinking Water 3 = H ₂ SO ₄ Plastic SL = Sludge Summa Canister 8 = Soil A = Air O = Oil OT = Other 6 = MeOH	= Amber	E) i	- -	ᅙ	7 "	3 9		dusped By.	6	\$ ∕	ime 600		d By:	رو	Dag.	E O
Sundage		It 11	(3 (S)	NO ₃				quished By:	d 1	66	^^	Receive	d By:	,]	19/0	, ,
= Other V = VOA O = Oil OT = Other 6 = MeOH	li 11	Soil	Ił II	la ₂ S ₂ O ₀ laOH	-		Relin	quished By:				Receive	d By: C	reola	bs:	2
	Я	۱۱ <u>S</u>	II 9	leOH					S u	00		1				

GeoLabs, Inc.

Environmental Laboratories

LABORATORY REPORT

PREPARED FOR:

Decoulos & Company 3 Electronics Avenue Danvers, MA 01923

Attn: Jim Decoulos

PROJECT ID:

616

131 Main Street

Carver, MA

GEOLABS CERTIFICATION #:

M-MA015

SAMPLE NUMBER:

135581 - 135586

DATE PREPARED:

June 20, 2003

PREPARED BY:

Christine Johnson

APPROVED BY:

Gorl Chen Jim Chen/Laboratory Director/Date

Location: 45 Johnson Lane

Braintree, MA 02184

Phone: (781) 848-7844

1 of 13

Fax: (781) 848-7811

Exhibit VII A-1 MCP Response Action Analytical Report Certification Form

Analytical Report Certification Form

Laboratory Name: GeoLabs, Inc.	
Laboratory Project #: 135581 - 135586	
MCP Site Name: 616	
MCP RTN #:	
MCP SW-846 8260B () 7470/1 () 8082 () Methods 8270C () 8081A () 7000 ()	VPH (x) Other: EPH (x) Other:
187 II OA 100 durant made for the analysis of	Yes ⊠ No □
Were all QA/QC procedures required for the specified analytical method(s) included in this report followed?	(if No must address in narrative. Attach additional information if required)
Were all QA/QC performance standards for specified analytical method(s) included in this report met (including those not required to be reported)?	Yes ⊠ No □ (if No must address in narrative. Attach additional information if required)
Were all contaminants identified and quantified by the laboratory in the course of this analysis of field samples, by comparison to a calibration standard, even if not a requested analyte, reported by the laboratory to the person that requested the analysis?	Yes * ⊠ No □ (if No must address in narrative. Attach additional information if required) *If Yes , reported in: ⊠ Analytical Report □ Case Narrative
Were all samples received by laboratory in a condition consistent with those described on their Chain-of-Custody documentation?	Yes ⊠ No □ (if No must address in narrative. Attach additional information if required)
I, the undersigned, attest under the pains and penalties of pe of those responsible for obtaining the information, the materia best of my knowledge and belief, accurate and complete.	
Signature: Janie Ben	Position: Lab Director
Printed Name: Jim Chen	Date: <u>June 20, 2003</u>
	

GeoLabs, Inc.

Environmental Laboratories

CASE NARRATIVE

Project ID:

616

Sample Number:

135581 - 135586

Client Name:

Decoulos & Company

Received:

6/16/03

Physical Condition of Samples

This project was received by the laboratory in satisfactory condition. The sample (s) were received undamaged, in appropriate containers with the correct preservation, with the following exceptions.

1. Samples received with temperatures at 7° C

Project Documentation

This project was accompanied by satisfactory Chain of Custody documentation. The sample container label(s) agreed with the Chain of Custody.

Analysis of Sample(s)

No analytical anomalies or non-conformances were noted by the laboratory during the processing of these sample(s).

SAMPLE INFORMATION

Matrix	☑ Aqueous □ Soil □ Sediment □ Other
Containers	
Aqueous Preservative	□ N/A ⊠ pH ≤ 2 □ pH > 2 Comment:
Temperature	☐ ☑ Received on ice ☐ Received at 4°C ☐ Other
Extraction Method	Water: Separatory Funnel Soil:

FULL EPH ANALYTICAL RESULTS

	YTICAL RESULTS					
Method for Ranges:						
Method for Target A			Client ID:	DCW-1	DCW-2	DCW-3
Method for PAH Tar		Lab ID:		135581	135582	135583
EPH Surrogate Star	ndards:		te Collected:	06/12/03	06/12/03	06/12/03
Aliphatic COD		Da	te Received:	06/16/03	06/16/03	06/16/03
Aromatic OTP		Dat	e Extracted:	06/17/03	06/17/03	06/17/03
		Date Frac	tions Analyzed:	06/18/03	06/18/03	06/18/03
EPH Fractionation S	Surrogates	Date Ta:	gets Analyzed:	06/18/03	06/18/03	06/18/03
2-Fluorobiphenyl	_	Díl	ution Factor:	1.0	1.0	1.0
2-Bromonaphthalen	e	Tota	al solids (%):	N/A	N/A	N/A
Range/Target An		RL	Units			
Unadjusted C11-0		100	(μg/L)	265	ND	ND
	Naphthalene	1.00	(μg/L)	95.3	ND	ND
Diesel PAH	2-Methylnaphthalene	1.00	(μg/L)	19.3	ND	ND
Analytes	Acenaphthene	1.00	(μg/L)	ND	ND	ND
	Phenanthrene	1.00	(μg/L)	ND ND	ND	ND
	Acenaphthylene	1.00	(μg/L)	ND	ND	ND
	Fluorene	1.00	(μ g/L)	ND	ND	ND
	Anthracene	1.00	(μg/L)	ND	ND	ND
	Fluoranthene	1.00	(μg/L)	ND	ND	ND
Other	Pyrene -	1.50	(μg/L)	МD	ND	ND
Target PAH	Benz[a]Anthracene	1.00	(μg/L)	ND	ND	ND
Analytes	Chrysene	1.00	(μg/L)	ND	ND	ND
	Benzo[b]Fluoranthene	1.00	(µg/L)	ND	ND	ND
	Benzo[k]Fluoranthene	0.120	(µg/L)	ND	ND	ND
	Benzo[a]Pyrene	0.080	(μg/L)	ND	ND	ND
	Indeno[1,2,3-c,d]Pyrene	0.240	(μg/L)	ND	ND	ND
	Dibenzo[a,h]Anthracene	0.500	(μg/L)	ND	ND	ND
	Benzo[g,h,i]Perylene	1.50	(μ g/L)	ND	ND	ND
C9-C18 Aliphatic Hy		100	(μg/L)	ND	ND	ND
C19-C36 Aliphatic H		100	(μg/L)	ND	ND	ND
C11-C22 Aromatic		100	(μg/L)	150	ND	ND
	e % Recovery (COD)			81%	82%	87%
	e % Recovery (OTP)			102%	63%	88%
Sample Surrogate	Acceptance Range			40-140%	40-140%	40-140%
2,2'-Difluorobipher				50%	62%	59%
2-Fluorobiphenyl %				54%	57%	58%
	ogate Acceptance Range			40-140%	40-140%	40-140%

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ${}^2C_{11}.C_{22}$ Aromatic Hydrocarbons exclude concentrations of Target PAH Analytes.

CERT	IFIC.	ATI	ON
------	-------	-----	----

Were all QA/QC procedures REQUIRED by the EPH Method followed? Were all performance/acceptance standards acheived? ☑ Yes □ N	
Were any significant modifications made to the EPH method?? 🗵 N	
I attest under the pains and penalties of perjury that, based upon my inquestion responsible for obtaining the information, the material contained in this rebelief, accurate and complete.	eport is, to the best of my knowledge and
SIGNATURE: PRINTED NAME: Jim Chen	POSITION: Lab Director
PRINTED NAME: Jim Chen	DATE: 6/20/03

SAMPLE INFORMATION

Matrix	■ Aqueous □ Soil □ Sediment □ Other	
Containers	■ Satisfactory □ Broken □ Leaking	,
Aqueous Preservative] □ N/A 図 pH ≤ 2 □ pH > 2 Comment:	
Temperature	☐ Received at 4° C ☐ Other	
Extraction Method	Water: Separatory Funnel Soil:	

FULL EPH ANALYTICAL RESULTS

FULL EPH ANALY						
Method for Ranges:						
Method for Target Ar			Client ID:	DCW-A	BP-4	DC-E1A
Method for PAH Targ		Lab ID:		135584	135585	135586
EPH Surrogate Stan	dards:		e Collected:	06/12/03	06/12/03	06/12/03
Aliphatic COD	i		e Received:	06/16/03	06/16/03	06/16/03
Aromatic OTP	:	Dat	e Extracted:	06/17/03	06/17/03	06/17/03
		Date Frac	tions Analyzed:	06/18/03	06/18/03	06/18/03
EPH Fractionation S	urrogates	Date Targets Analyzed:		06/18/03	06/18/03	06/18/03
2-Fluorobiphenyl			ution Factor:	1.0	1.0	1.0
2-Bromonaphthalene		Tota	d solids (%):	N/A	N/A	N/A
Range/Target Ana		RL	Units			
Unadjusted C11-C	22 Aromatics	100	(μg/L)	211	ND	ND
·	Naphthalene	1.00	(μg/L)	88.2	ND	ND
Diesel PAH	2-Methylnaphthalene	1.00	(μg/L)	18.3	ND	ND
Analytes	Acenaphthene	1.00	(μg/L)	ND	ND	ND
	Phenanthrene	1.00	(μg/L)	NĐ	ND	ND
	Acenaphthylene	1.00	(μg/L)	ND	ND	ND
	Fluorene	1.00	(μg/L)	ND	ND	ND
	Anthracene	1.00	(μg/L)	ND	ND	ND
	Fluoranthene	1.00	(μg/L)	ND	ND	ND
Other -	Pyrene	1.50	(μg/L)	ND	ND	ND
Target PAH	Benz[a]Anthracene	1.00	(μg/L)	ND	ND	ND
Analytes	Chrysene	1.00	(μg/L)	ND	ND	ND
	Benzo[b]Fluoranthene	1.00	(μg/L)	ND	ND	ND
	Benzo[k]Fluoranthene	0.120	(μg/L)	ND	ND	ND
	Benzo[a]Pyrene	0.080	(μg/L)	ND	ND	ND .
	Indeno[1,2,3-c,d]Pyrene	0.240	(μg/L)	ND	ND	ND
	Dibenzo[a,h]Anthracene	0.500	(μg/L)	ND	ND	ND
	Benzo[g,h,i]Perylene	1.50	(μg/L)	ND	ND	ND
C9-C18 Aliphatic Hy		100	(μg/L)	702	ND	ND
C19-C36 Aliphatic Hy		100	(μg/L)	ND	ND	ND
C11-C22 Aromatic I		100	(μg/L)	104	ND	ND
	% Recovery (COD)			80%	85%	91%
Aromatic Surrogate	% Recovery (OTP)			92%	87%	94%
Sample Surrogate	Acceptance Range	•		40-140%	40-140%	40-140%
2,2'-Difluorobiphen	yl % Recovery			52%	ু 115%	54%
2-Fluorobiphenyl %				54%	117% 😹	52%
Fractionation Surro	gate Acceptance Range			40-140%	40-140%	40-140%
	ta exclude concentrations of any sur	rogatele) andig	r internal stand			

Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ${}^2C_{11}.C_{22}$ Aromatic Hydrocarbons exclude concentrations of Target PAH Analy tes.

CERTIFICATION

Were all QA/QC procedures REQUIRED by the EPH Method followed?	
Were all performance/acceptance standards acheived? Yes 'Ware any performance/acceptance standards acheived? Yes '''''''''''''''''''''''''''''''''''	
Were any significant modifications made to the EPH method??	No LI Yes - Details attached
I attest under the pains and penalties of perjury that, based upon my incresponsible for obtaining the information, the material contained in this belief, accurate and complete.	quiry of those individuals immediately report is, to the best of my knowledge and
SIGNATURE: PRINTED NAME: Jim Chen	POSITION: Lab Director
PRINTED NAME: Jim Chea	DATE: 6/20/03

EPH - QC - Ranges EXTRACTABLE PETROLEUM HYDROCARBONS

QC RESULTS

	Method Blank	MDL (μg/L)	Spike % Recovery 1	Spike % Recovery 2	
*c9-c18 Aliphatics	34.4	100	51.8	. 46.5ા	40-140
c19-c36 Aliphatics	21.0	100	98.8	92.8	40-140
c11-c22 Aromatics	44.6	100	69.9	· 71.1	40-140

Surrogate % Recovery:

COD	81%	40-140	91% 77%	40-140
OTP	95%	40-140	97% 94%	40-140

EPH - QC Target Analyte EXTRACTABLE PETROLEUM HYDROCARBONS

QC RESULTS

		~~.~~~~~	
	Method Blank	Spike % Recovery	Limits %
Naphthalene	ND	41%	40-140%
Acenapthalene	ND	61%	40-140%
Anthracene	ND	76%	40-140%
Pyrene	ND	82%	40-140%
Chrysene	ND	87%	40-140%

SAMPLE INFORMATION Matrix Aqueous

~ · u · · · · · · · · · · · · · · · · ·	** ********							
Matrix	■ Aque	eous 🗆 S	oil □ Sedin	nent □ (Other			
Containers	x s	Satisfactory	☐ Broken	□ Leaking	_			
	Aqueous		pH ≤ 2 □					
Sample	Soil or				in MeOH or ai		ners	mi MeOH
Preservative	Sediment		s received in l		Covering soil	? 🗆 Not		□1:1 <u>+</u> 25%
		<u> </u>	d in air tight o			·		☐ Other
Temperature	L	Received on ic	e 🗆 Re	eceived at 4° (т	
VPH ANAL	YTICAL RE	SULTS			Client ID:	DCW-1		ļ
Method for R	tanges: MAD	EP VPH			Lab ID:	135581		
Method for T	arget Analyte	s: MADEP V	PH	Dat	e Collected:	06/12/03		
VPH Surroga	ate Standards	;		Dat	e Received:	06/16/03		
	PID (2,5-Di	bromotoluen	e)	_ Dat	e Analyzed:	06/19/03		
	FID (2,5-Di	bromotoluen	e)	Dilt	ition Factor:	20 / 1.0*		
	•			Tota	l solids (%):	N/A		
Range/Targ	get Analyte		Elut. Range	RL	Units			
	d C5-C8 Alip	hatics1	N/A	800	ug/L	4310		
	d C9-C12 Ali		N/A	300	ug/L	2540	1	
	-butyl ether		C ₅ -C ₈ Aliph.	100	ug/L	6380		
Benzene		-	C ₅ -C ₈ Aliph.	5.0*	ug/L	11.7	 	
Toluene			C ₅ -C ₈ Aliph.	100	ug/L	1030		1
Ethylbenze	ene		C ₉ -C ₁₂ Aliph.	. 100	ug/L	1500		
m&p-Xylen			C ₉ -C ₁₂ Aliph.	100	ug/L	7090		
o-Xylene			C ₉ -C ₁₂ Aliph.	100	ug/L	3220		
Naphthale			N/A	400	ug/L	446		
C5-C8 Aliph	atic Hydroca	arbons ^{1,2}	N/A	800	ug/L	ND		<u> </u>
C9-C12 Alip	hatic Hydrod	carbons ^{1,3}	N/A	300	ug/L	ND		
C9-C10 Aro	matic Hydr	ocarbons'	C ₉ -C ₁₂ Aliph.	1100	ug/L	5410		
2,5-Dibrom	otoluene (Pl	D) Surrogate	Recovery			74%		
2,5-Dibrom	otołuene (FI	D) Surrogate	Recovery			75%		
	Acceptance l				:	70-130%		
I '		clude concentra					that range	:
		s exclude the co					6C C Asomo	tia Usukaanka
C ₉ -C ₁₂ Alipha	tic Hydrocarbor	ns exclude conc	of Target Analy	res eluting in tr	at range AND o	concentration o	TC9-C10 Aroma	лс пуогосавоон
CERTIFICA	ATION							
		lures REQUI	RED by the	VPH Method	followed?	× Yes □	No - Detail	s attached
		nance /acce						
	•	odifications n						
	_							
		and penaltie						
	•	for obtaining	-		terial contair	ned in this re	eport is, to	
the best of t	my knowled	ge, accurate	and complet	te.				
91	GNATURE:	A.	w. 64	E trais-		POSITION:	Lab Directo	ır
	IGNATORE:	1/2/1	W. G. S. S. A.	S. Mark.		FOSITION.	Lab Directo	1
PRIN'	TED NAME:	Jim Chen				DATE:	06/20/03	

SAMPLE INFORMATION

Matrix	☑ Aque		oil 🗆 Sedin		Other			
Containers	⊠ S		□ Broken					
ļ,	Aqueous			pH > 2 Com				
Sample	Soil or				in MeOH or air		ners	ml MeOH
Preservatives	Sediment				Covering soil	? □ Not		☐1:1 <u>+</u> 25%
<u>'</u>	ļ	 .		air tight container □ Received at 4° C □ Other				
Temperature		Received on ic	<u>e □ Re</u>	eceived at 41 €		5000	T 00141 0	T
1	YTICAL RE		!	<u></u>	Client ID:		DCW-3	
1	Ranges: MAD		!		Lab ID:		135583	
	-	es: MADEP VF	2H		te Collected:	06/12/03	06/12/03	<u> </u>
VPH Surroga	ate Standards		į		te Received:	06/16/03	06/16/03	
	• •	ibromotoluen	, i		te Analyzed:	06/19/03	06/19/03	
	FID (2,5-Di	ibromotoluene	e) '		ution Factor:	+	1.0	<u> </u>
				Tota	al solids (%):	N/A	N/A	
Range/Targ			Elut, Range	RL	Units			
Unadjusted	d C5-C8 Alip		N/A	40	ug/L	93.7	ND	
	l C9-C12 Alip		N/A	15	ug/L	ND	ND	
	t-butyl ether		C ₅ -C ₈ Aliph.	5	ug/L	243	ND	
Benzene			C ₅ -C ₈ Aliph.	5	ug/L	ND	ND	
Toluene			C ₅ -C ₈ Aliph.	5	ug/L	ND	ND	
Ethylbenzer	ne .		C ₉ -C ₁₂ Aliph.	5	ug/L	ND	ND	
m&p-Xylene			C ₉ -C ₁₂ Aliph.	5	ug/L	ND	ND	
o-Xylene			C ₉ -C ₁₂ Aliph.	5	ug/L	ND	ND	
Naphthalen	ie		N/A	20	ug/L	ND	ND	
	natic Hydroca	arbons ^{1,2}	N/A	40	ug/L	ND	ND	
	hatic Hydroc		N/A	15	ug/L	ND	ND	
	matic Hydro		C ₉ -C ₁₂ Aliph.	55	ug/L	ND	ND	
2,5-Dibrom	otoluene (PI	ID) Surrogate				90%	90%	
		D) Surrogate				84%	83%	
	Acceptance F					70-130%	70-130%	
		clude concentrat	itions of any su	rrogate(s) and/c	or internal stand	ards eluting in		
² C ₅ -C ₈ Aliphatic	ic Hydrocarbons	is exclude the co	oncentration of	Target Analytes	s eluting in that a	range		
		ns exclude conc					f C ₉ -C ₁₀ Aromat	tic Hydrocarbon
CERTIFICA	ATION							
		dures REQUI	RED by the	VPH Methor	followed? [⊠ Yes C	No - Detail	is attached
		mance /accer						
		odifications m						
1								
İ ,			_					
		and penalties						
	•	for obtaining	_	-	terial contain	ned in this re	port is, to	
the best of r	my knowleaç	ge, accurate	and complet	te.				
sı	IGNATURE:	: Jim Chen		The state of		POSITION:	Lab Director	ır
		LON	M. Com	* .•=				
PRIN7	TED NAME:	. Jìm Çhen				DATE:	06/20/03	

9	ΔΜ	PI	F	INF	OR	MΔ	TIC	ìN
	_			JITL	\sim 11			<i>7</i> 3

•								
Matrix	✓ Aque	ous 🗆 S	oil □ Sedin	nent 🛚 🤇	Other			
Containers	⊠ S		☐ Broken					
	Aqueous			pH > 2 Com				
Sample	Soil or				n MeOH or ai		ners	ml MeOH
Preservatives	Sediment		s received in I		Covering soil	? D Not		□1:1 <u>+</u> 25%
			d in air tight o		D 17 OH			☐ Other
Temperature		Received on ic	e ⊔ R∈	eceived at 4° (DOM A	· · · · · · · · · · · · · · · · · · ·	<u> </u>
1	YTICAL RE				Client ID:	DCW-A	ļ	-
1	anges: MAD				Lab ID:	135584		
		s: MADEP VI	PH		e Collected:	06/12/03		
VPH Surroga	ite Standards		:		e Received:	06/16/03		
	,	bromotoluen			e Analyzed:	06/19/03_	<u> </u>	
	FID (2,5-Dil	bromotoluen	e)		ition Factor:	20 / 1.0*		
				Tota	l solids (%):	N/A		
Range/Targ	et Analyte		Elut, Range	RL	Units			
Unadjusted	C5-C8 Alip	hatics ¹	N/A	800	ug/L	3400		
Unadjusted	C9-C12 Ali	phatics ¹	N/A	300	ug/L	2660		
Methyl tert	-butyl ether		C ₅ -C ₈ Aliph.	100	ug/L	5930	<u> </u>	<u> </u>
Benzene			C ₅ -C ₆ Aliph.	5.0*	ug/L	9.40		
Toluene			C ₅ -C ₈ Aliph.	100	ug/L	11 <u>10</u>		
Ethylbenze	ene		C ₉ -C ₁₂ Aliph.	100	ug/L	1580		
m&p-Xylen	es		C ₉ -C ₁₂ Aliph.	100	ug/L	7760		
o-Xylene			C ₉ -C ₁₂ Aliph.	100	ug/L	3380		
Naphthaler	ne		N/A	400	ug/L	442		
	atic Hydroca	arbons 1,2	N/A	800	ug/L	ND		
C9-C12 Alip	hatic Hydroc	arbons ^{1,3}	N/A	300	ug/L	ND		
	matic Hydro		C ₉ -C ₁₂ Aliph.	1100	ug/L	5650	<u> </u>	
2.5-Dibrome	otoluene (Pli	D) Surrogate	Recovery		-	92%	Ī.	
<u> </u>		D) Surrogate				83%		
-	cceptance F		f	Í		70-130%	1	
		dude concentra	tions of any sui	rrogate(s) and/o	r internal stand	ards eluting in	that range	
² C ₅ -C ₈ Aliphati	c Hydrocarbon	s exclude the co	oncentration of	Target Analytes	s eluting in that	range		
⁹ C ₉ -C₁₂ Alipha	tic Hydrocarbon	ns exclude conc	of Target Analy	tes eluting in th	at range AND o	concentration o	f C ₉ -C ₁₀ Aroma	tic Hydrocarbon
							-	
CERTIFICA								
		lures REQUI						
		nance /accep						
vvere any s.	igniticant mo	odifications n	nade to the \	VPH metnoa	, as specified	in Sect 11.	.3.? LEL IND	
Lattoet und	or the naine	and penaltie	s of periury t	that haced:	non my inau	iru of thosa	individuale	
	-	for obtaining				-		
	•	ge, accurate	-		torio corrain	70 G 71 LI 11.0 7 C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1	-	· ./-	•					
SI	GNATURE:	<u>Jefa</u>	10 7 7 1 1 H	#2 J. C.		POSITION:	Lab Directo	T
PRIN'	TED NAME:	Jim Chen				DATE:	06/20/03	

SAMPLE INFORMATION

Matrix ☑ Aqueous ☐ Soil ☐ Sediment ☐ Other

Containers	B	Satisfactory	☐ Broken	☐ Leaking				
	Aqueous		⊠ pH <u>≤</u> 2 □					
Sample	Soil or		I Samples NO				ners	ml MeOH
Preservatives	Sediment		es received in l		Covering soil	? □ Not		□1:1 <u>+</u> 25%
			ed in air tight o					☐ Other
Temperature		Received on ic	e □ Re	eceived at 4°				1
	YTICAL RE		!	<u> </u>	Client ID:	BP-4	ļ	ļ
Method for R	_		!		Lab ID:	135585	ļ	ļ
Method for T	arget Analyt	tes: MADEP V	PH		e Collected:	06/12/03	<u> </u>	
VPH Surroga	ate Standard		!	Dat	e Received:	06/16/03	<u> </u>	
	PID (2,5-D	Dibromotoluen	ie)	Daf	te Analyzed:	06/19/03	<u> </u>	
	FID (2,5-D	Dibromotoluen	ıе)		ution Factor:	1.0		
				Tota	l solids (%):	N/A		
Range/Targ			Elut. Range	RL	Units			
Unadjusted	C5-C8 Alip	hatics ¹	N/A	40	ug/L	ND		
Unadjusted	C9-C12 Ali	phatics ¹	N/A	15	ug/L	ND		
Methyl tert	-butyl ethe	er	C ₅ -C ₈ Aliph.	5	ug/L	15.3		
Benzene			C ₅ -C ₈ Aliph.	5	ug/L	ND		
Toluene			C ₅ -C ₈ Aliph.	5	ug/L	ND		
Ethylbenzer	ne		C ₉ -C ₁₂ Aliph.	5	ug/L	ND		-
m&p-Xylene	es		C ₉ -C ₁₂ Aliph.	5	ug/L	ND		
o-Xylene			C ₉ -C ₁₂ Aliph.	5	ug/L	ND		
Naphthalen			N/A	20	ug/L	ND		
C5-C8 Aliph	natic Hydroc	:arbons ^{1,2}	N/A	40	ug/L	ND		
C9-C12 Alipl	hatic Hydro	carbons ^{1,3}	N/A	15	ug/L	ND		
C9-C10 Aror	matic Hydro	carbons'	C ₉ -C ₁₂ Aliph.	55	ug/L	ND		
2,5-Dibromo	otoluene (P	ID) Surrogate	Recovery			94%		
2,5-Dibromo	otoluene (F	ID) Surrogate	Recovery			78%		
Surrogate A	Acceptance	Range				70-130%		
L		xclude concentra	•			_	that range	
		ns exclude the co						
°C ₉ -C ₁₂ Aliphat	tic Hydrocarbo	ons exclude conc	of Target Analy	ites eluting in th	at range AND c	oncentration of	f C ₉ -C ₁₀ Aromat	ic Hydrocarbon
CERTIFICA								
		dures REQUI						
		mance /accep						
Were any si	ignificant m	odifications m	nade to the V	/PH method	, as specified	l in Sect 11.	.3.? ⊠ No	
I attact unde	a- tha nainn		- of a ariomy d	terk boood.		·!···	*1: -1-1-1-1-	
		and penaltie: e for obtaining						
		e ioi obtaining Ige, accurate			lenai comani	1 0 0 111 11115 1 0	porcis, io	
SI	GNATURE:	:	W.C.	printing the second	;	POSITION:	Lab Director	r
PRINT	TED NAME:	· Jun Chen				DATE.	06/20/03	

Matrix:	Water	μ g/L	LCS %	Limit	BLANK
MTBE			113%	70-130%	ND
Benzene			103%	70-130%	ND
Toluene			127%	70-130%	NĐ
Ethyl Benz	zene		120%	70-130%	ND
m,p-xylen	e		130%	70-130%	ND
o-xylene			126%	70-130%	ND
Naphthale	ene		120%_	70-130%	ND
Surrogate	e Recoveries:				
2,5-Dibror	notoluene (PII)	94%		
2,5-Dibror	notoluene (FII))	89%		

GEOLABS, INC. 45 JOHNSON LANE BRAINTREE, MA 02184 M-MA015

LIMITATIONS & EXCLUSIONS

All the professional opinions presented in this report are based solely on the scope of work conducted and sources referred to in our report. The data presented by GeoLabs in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations and materials that were observed at the time the work was conducted. No inferences regarding other conditions, locations or materials, at a later or earlier time may be made based on the contents of the report. No other warranty, express or implied is made.

This report was prepared for the sole use of our client. Portions of the report may not be used independent of the entire report.

All analyses were performed within required holding times, in accordance with EPA protocols and using accepted QA/QC procedures. All QA/QC meets acceptable limits unless otherwise noted. The information contained in this report is, to the best of my knowledge, accurate and complete.

Any and all subsequent pages of this report are chain(s) of custody.

Client: PECOLLOS + C. Address: 3 ELECTIONICS Phone: 617-489-77 Fax: 877-842-96 Contact: 77M SAMPLE D T A B COLLECTION C
CONTAINER CODES: A = Amber
Bag Glass
Plastic Summa Canister
Other $V = VOA$

APPENDIX M NUMERICAL RANKING SYSTEM SCORESHEET

No.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC107A

NUMERICAL RANKING SYSTEM (NRS) SCORESHEET

Release Tracking Number

Pursuant to	310 CMR	40.1511	(Subpart O)

4 - 17582

	ition Submittal:	MARY SECTION: (check one)	a. Initial NR	s score [T (podred)	1000	
		(check one)	🖊 a. Initial NR	S Score I			
Disposat	Cita Caara:			O Ocore [b. Revised N	IRS Score	
	_	<u> </u>			1 ,,,	-	
⊢	II	III	IV	V	VI	Total	
	440	117	135	50	0	742	
Disposal !	Site Classificat	tion: (check one)					
🛾 a. Tier	rIA 🗌 b	. Tier tB 🔲 c	c. Tier IC	d. Tier II			
DISPOSA	AL SITE INFORI	WATION (NRS SEC	TION I):				
UTM Coo	rdinates: a	. UTM N: 46384	58 b.	UTM E: 35	3451		
Check wh	nich, if any, of th	ne Tier I inclusiona	ry criteria are m	et by the Disp	osal Site, pursua	nt to 310 CMR 40.0520	(2):
- a Cra						there is evidence of gr	
contan	nination by an	Oil or Hazardous N	Material at the tin	ne of Tier Cla	ssification at con-	centrations equal to or	exceeding
the ap	plicable RUGW	√-1 Reportable Co	ncentration set r	ortu in 310 Ci	MR 40.0300.		
b. An I	mminent Haza	rd is present at the	e time of Tier Cla	assification.			
			n.				
		S (NRS SECTION II d Oil and Hazardou		A) Sources:			
•	•	to 310 CMR 40.1			nation Criteria a	nd NRS Table II.	
	re using NRS T		·				
					Score		
		A. Soil (include	s sediment)		150		
		B. Groundwater	r		100		
		C. Surface Wat	er (includes we	tlands)	150		
		D. Air			15		
		E. Number of O	HM Sources		25		
		Total NRS Sect	ion II Score (15	- 700)	440		
		1.4.4		. • • •	' ' ' I		

Revised: 05/20/2003

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC107A

NUMERICAL RANKING SYSTEM (NRS) SCORESHEET
Pursuant to 310 CMR 40.1511 (Subpart O)

Release Tracking Number

4	

17582

	•	posure Pathway Values, AD Ipon contaminated :	•		ıtfall. G	eroundy	vater
		potential impact to					
Wil	liam Holmes. S	Surface waters at So	outh Meadow Bro	ok are kr	nown to	be imp	oacted
(se	e Table 3 of Ph	ase I on page 23).	Air impact is pos	sible but	not yet	known	•
The	se potential pa	ithways have not be	een demonstrate d	l to be lin	ked to	Eagle (Sas,
Inc							•
					-		<u>.</u>
				 			
		TERISTICS (NRS SECTION III):					
		! (OHM) Toxicity Score (NRS & IM Toxicity Score from either N		eet BLA 1 ·			
		M Scored	Concentration and		Toxicity	Score	
	0 1.				(1 -		
					,		
	C11-C22 Aroma	tic NAPL	10 in @ BP-5RR		5:		
		ttic NAPL Vorksheet III.A.1. to determine		r OHM not list	5:	5	
				r OHM not list Concent (Water -	5i ed in NRS	5 Table III.A.	icity core
	b. Score using NRS W	Vorksheet III.A.1. to determine Human Health-based	the OHM Toxicity Score fo	Concent	5i ed in NRS	5 Table III.A.	icity
	b. Score using NRS W	Vorksheet III.A.1. to determine Human Health-based	the OHM Toxicity Score fo	Concent	5i ed in NRS	5 Table III.A.	icity
	b. Score using NRS W	Vorksheet III.A.1. to determine Human Health-based	the OHM Toxicity Score fo	Concent	5i ed in NRS	5 Table III.A.	icity
	b. Score using NRS W	Vorksheet III.A.1. to determine Human Health-based	the OHM Toxicity Score fo	Concent	5i ed in NRS	5 Table III.A.	icity
	b. Score using NRS W	Vorksheet III.A.1. to determine Human Health-based	the OHM Toxicity Score fo	Concent	5i ed in NRS	5 Table III.A.	icity
	b. Score using NRS W	Vorksheet III.A.1. to determine Human Health-based	the OHM Toxicity Score fo	Concent	5i ed in NRS	5 Table III.A.	icity
	b. Score using NRS W	Vorksheet III.A.1. to determine Human Health-based	the OHM Toxicity Score fo	Concent	5i ed in NRS	5 Table III.A.	icity
	b. Score using NRS W	Vorksheet III.A.1. to determine Human Health-based	the OHM Toxicity Score fo	Concent	5i ed in NRS	5 Table III.A.	icity
	b. Score using NRS W	Vorksheet III.A.1. to determine Human Health-based	the OHM Toxicity Score fo	Concent	5i ed in NRS	5 Table III.A.	icity

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC107A

a. Yes

b. No

	NUMERICAL Pursuant to 310	L RANKI	NG S	YSTEI	M (Ni	RS) S0	CORE	SHEET	Release 4 -		king Number 7582
2. N	fultiple OHMs (NRS Section III.B.):			•						
	Was the Toxicity Score of more	than on e O	HM grea	iter than	or equ	ual to 30°	?	🛮 a. Yes ((30) 🗌 t	o. No	(0)
3. C	HM Mobility and Persistence (NF	RS Section I	II.C.):								
	Score according to 310 CMR 40.1514 - OHM Mobility and Persistence										
	a. OHM	Scored				b. Score	(0 - 50)			
	Virgin Fuel Oil					20	_				
4. 🖸	Disposal Site Hydrogeology (NRS				s	ite Hydra Sca	ogeolog ore	ıy			
	Score according to 310 CMR 40 and NRS Table III.D.).1515 - Soi	l Permea	ability,		12	_				
5. T	otal NRS Section III Score:	Α.	i	В.	C.	1	D.		or Section I 3 - 180)	Iŧ]
		55	30	,	20			17]	
E, I	Was Section G (NRS Section VI) HUMAN POPULATION AND LAND HUMAN POPULATION AND LAND	USES (NR	S SECTI		opulat		Instit	utions 500 Feet	On-site Workers		opulation ore (0 - 40)
	Score using NRS Table IV.A.	}	15		2 19/110	0		0001001	5	1	20
2. A	quifers (NRS Section IV.B.):	Į								Щ	
	a. Sole Source Aquifer:	i. Yes ((25) ii	. Name	:					iji. N o	o (0)
	b. Potentially Productive Aquife	er: 🔽	i. Med	dium or	High (1	15)	i	. No (0)			
3. V	Vater Use (NRS Section IV.C.): Score using NRS Table IV.C.	Proxim Public D Water S	rinking	Pul	ons Se blic Dri ater Su		Private Water Alternate Publication Supplies Water Supply within 500 Feet Available		ply	Water Use Score (0 -125)	
		50			0		25		25		100
4 . T	otal NRS Section IV Score:	Α.		В.		C			or Section IV	7	
<u>.</u>		20	,	15	5	10		(0	135	\dashv	
I											

Page 3 of 5 Revised: 05/20/2003

5. Was Section G (NRS Section VI) used to amend the score for this Section of the NRS?

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC107A

NUMERICAL RANKING SYSTEM (NRS) SCORESHEET

Release Tracking Number
4 - 17582

Pursuant to 310 CMR 40.1511 (Subpart O)

F	FCOLOGICAL	POPULATION:	(NRS SECTION V):
г.	FOOFOOIOWE	FOR OPPINGE	IMAG OFF LIGHT AND

Environmental Resource Areas (NRS Section V.A.): Section V.A.):	core using NRS Table V.A.
---	---------------------------

Area of Critical Environmental Concern	Species of Special Concern, Threatened or Endangered Species Habitat	Wetlands, Certified Vernal Pool, or Outstanding Resource Water	Fish Habitat	Protected Open Space	Environmental Resource Area Score (0 - 150)
0	0	30	0	0	30

2. Environmental Toxicity Score (NRS Section V.B.):

Score only if Environmental Resource Area Score is greater than or equal to 30.

a. Use the Highest Environmental Toxicity Score from either NRS Table V.B. or from Worksheet V.B.1.:

OHM Scored	Concentration and Media	Toxicity Score (0 - 35)
#2 Fuel Oil at Stormwater Outfall	2,150,000 ug/l surface wtr	20

b. Score using NRS Worksheet V.B.1. to determine the Environmental Toxicity Score for OHM not listed in NRS Table V.B. See 310 CMR 40.1516 for Environmental Toxicity Values for each OHM.

Environmental Toxicity Value	Concentration (Soil - ug/g)	Concentration (Water - ug/l)	Environmental Toxicity Score
	•		
_			
	•		
_			
	Environmental Toxicity Value	Environmental Toxicity Value Concentration (Soil - ug/g)	

3.	Total	NRS	Section	٧	Score:

A.	В.	Total for Section V (0 - 185)
30	20	50

4. Was Section G (NRS Section VI) used to amend the score for this Section of the NRS?	☐ a.	. Yes	✓	b.	No
--	------	-------	----------	----	----

Revised: 05/20/2003 Page 4 of 5

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC107A

NUMERICAL RANKING SYSTEM (NRS) SCORESHEET Pursuant to 310 CMR 40.1511 (Subpart O)

Release Tracking Number

4

17582

G. MITIGATING DISPOSAL SITE -SPECIFIC CONDITIONS (NRS SECTION VI):
1. Disposal site-specific conditions that warrant amending the site score. Changes directly related to NRS Sections or Subsection scores may not reduce the score more than the relevant subsection value assigned for the disposal site in that subsection. Section VI must reference specific pages of the Phase I. Section VI may not exceed plus or minus 50 points and may be scored only in 5-point increments.
Ranking has been established based upon cumulative threats of RTNs 4-12848, 4-
13333, 4-17582 and 4-17825. Significant data is still required to fully assess all four
releases. Future sampling of surface waters and sediments will require analysis for
metals, SVOCs and PCBs.
2. Check here if additional pages are provided in an attachment.
Total Score Section VI
3. Disposal Site Amendment. (Not to exceed plus or minus 50 points):

		•